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Abstract. At EUROCRYPT 2011, Obana proposed a k-out-of-n secret sharing scheme
capable of identifying up to ¢ cheaters with probability 1 — € under the condition ¢ < k/3.
In that scheme, the share size |V;| satisfies |V;| = |S|/e, which is almost optimal. However,
Obana’s scheme is known to be vulnerable to attacks by rushing adversary who can observe
the messages sent by the honest participants prior to deciding her own messages. In this
paper, we present a new scheme, which is secure against rushing adversary, with |V;| =
|S]/e" ! assuming ¢ < k/3. We note that the share size of our proposal is substantially
smaller compared to |Vi| = |S|(t + 1)*"/€é*™ in the scheme by Choudhury at PODC 2012
when the secret is a single field element. A modification of the later scheme is secure against
rushing adversary under a weaker ¢ < k/2 condition. Therefore, our scheme demonstrates
an improvement in share size achieved for the price of strengthening the assumption on t¢.

Keywords: cheater identifiable secret sharing, Shamir secret sharing, rushing ad-
versary

1 Introduction

Secret sharing, independently introduced by Shamir [1] and Blakley [2], is an impor-
tant primitive enjoying numerous cryptographic applications such as threshold cryp-
tography [3], secure multiparty computation [4,5], and (perfectly) secure message
transmission [6], to mention a few. A typical example is the threshold (or k-out-of-n)
secret sharing scheme that allows a dealer D to distribute a secret s among a set
of n participants (or players) {Py, Ps, ..., P,} in such a way that the following two
properties hold: (1) perfect secrecy: k —1 or less participants can get no information
about s from their shares; (2) correctness: k or more participants can pool their
shares together to reconstruct the secret. In the original setting of secret sharing
schemes, it is assumed that all players will provide correct shares when reconstruct-
ing the secret. Since this assumption does not model the real life scenario, in which
some participants may submit incorrect shares in order to cause the reconstruction
of an incorrect secret, a body of work has been done on identifying the cheaters
in secret sharing schemes. Next, we will discuss some of the prominent results in
this area. If there are more than one cheating participant, we will assume a single
malicious adversary who controls their behavior. The adversary is called rushing, if
she is allowed to observe all the messages sent by honest players (in every round)
prior to deciding on cheaters’ messages.

1.1 Secret Sharing with Cheaters

In this work, we focus on secret sharing with cheater identification (SSCI). In this
setting, the dealer is assumed to be honest. At the reconstruction stage, when a qual-
ified subset of participants pool their shares, they will be able to identify cheater(s)
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among them, who submitted a forged share, as long as the number of cheaters is
smaller than a certain bound.

The idea of secret sharing with protection against cheating was pioneered by
Tompa and Woll [7]. They modified the (k-out-of-n) Shamir secret sharing scheme [1]
to enable the cheater detection (not identification). The first secret sharing scheme
capable of identifying cheaters is due to Rabin and Ben-Or [4]. Later, McEliece
and Sarwate [8] showed that Shamir scheme is cheater identifiable by exhibiting its
connection to Reed-Solomon codes. Note that this scheme requires the presence of
more than k participants in order to carry out cheater identification. In contrast,
Kurosawa, Obana and Ogata [9] considered the problem of identifying cheaters when
only k players take part in the reconstruction. In particular, they gave a lower bound
on the share size in this model:

S|—1
vz By 0

where € is the cheaters’ success probability.

In this work, we mainly focus on SSCI in the model of Kurosawa et al. [9]. They
proposed an SSCI scheme identifying ¢ < k/3 cheaters in k-out-of-n Shamir secret
sharing. Obana [10] improved Kurosawa et al.’s scheme by reducing the share size
to |V;] = |S|/e, which is almost optimal, and in addition proposed two (inefficient)
SSCI schemes identifying up to ¢ < k/2 cheaters.

While the above mentioned schemes can only identify non-rushing cheaters,
Choudhury [11] implemented an efficient SSCI scheme which can identify up to
t < k/2 rushing cheaters, achieving the share size |V;| = |S|/e when the secret
consists of | = 2(n) field elements.

Cevallos et al. [12] proposed a robust secret sharing scheme (RSS) against up to
t < n/2 rushing cheaters with share size |V;| = |S| |log|S| - (t + 1)(§)H25]3n which is
close-to-optimal. In their scheme, all the n players are required to take part in the
reconstruction phase.

We note that in this work, we focus on public cheater identification [10,11], where
reconstruction is performed such that all the shares are treated equally in terms of
their trustworthiness by the reconstruction algorithm. It means that this algorithm
can be performed even by an external reconstructor. Such type of schemes are only
possible for the case of honest majority.

On the contrary, in the schemes with private identification [4, 13], the share
received by a user from the honest dealer is assumed to be trusted. Such types of
schemes do not need honest majority for cheater identification, as explained in [10].

The concept of identifying cheaters without an honest majority is further developed
by Ishai et al. in [14].

1.2 Related Works

To the best of our knowledge, up to date, the constructions of [11] and [12] are the
most efficient secret sharing schemes secure against rushing adversary, in terms of
their share size. Both of them are based on the paradigm by Rabin and Ben-Or [4].
In these schemes, a pairwise authentication is applied to identify cheaters in the
reconstruction phase. More precisely, every player receives n — 1 tags computed ac-
cording to some unconditional Message Authentication Code (MAC) for every share,
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and the corresponding keys are distributed to the other n — 1 players, respectively.
Therefore, every player can check the validity of shares belonging to other play-
ers. Hereby, cheaters’ success probability is bounded by the successful substitution
attack probability of the used MAC. The schemes [11] and [12] also employ some
additional (novel) techniques on top of this generic procedure.

In Choudhury’s scheme [11], the shared secret is a vector s = (s1, Sa, ..., s;) from
IF;, where I, is some finite field and [ > 1. Every player P; obtains Shamir sharing
sh; of s element-wise. Then the sharing algorithm uses a MAC to authenticate
sh; as t;; = MAC(sh;, k;;) where k;; held by player P; is the authentication key
chosen uniformly and randomly from some finite field. At the reconstruction phase,
a majority voting is taken based on the result of verifying each player’s tags. Each
player whose share is not recognized by the majority is identified as cheater (thus
this scheme is public cheater identifiable). Choudhury’s scheme is asymptotically
optimal when [ = 2(n).

The sharing phase of Cevallos et al. [12] is identical to that of Ben-Or [4] except
for the MAC used. Here, it is assumed that n = 2¢ 4+ 1. The sharing algorithm
first chooses the secret s € IF then calculates tags of P;’s Shamir share as ¢;; =
MAC(sh;, k;;). At the reconstruction phase player P;’s share sh; will be accepted
as valid only if it is recognized by t + 1 players who hold accepted shares. After that
Reed-Solomon error correction is applied to rule out potential cheaters who are not
identified by the majority voting. Due to such an advanced reconstruction phase,
shorter keys and tags for the MAC can be used in their scheme, as compared to the
straightforward approach. Hereby, a reduction in the share size is achieved.

We point out that in fact, Cevallos et al. scheme [12] can identify cheaters.
Moreover, it can be modified in a straightforward manner, in order to satisfy the
property of SSCI such that only & players can identify up to ¢ < k/2 cheaters, since
it uses the same message authentication and majority voting strategy as [4] and [11].
However, if there are only k players in the reconstruction phase, then Reed-Solomon
error correction will not rule out the potential cheaters who are not identified by
the majority voting. Let us explain this point in details: For Reed-Solomon error
correction to work, the number of correct symbols must be greater than the degree
of the polynomial f(x). In other words, Reed-Solomon error correction can only
be used to rule out potential cheaters, if there are at least k honest players in the
reconstruction phase. On the other hand, when the number of players taking part
in reconstruction is m < k + t, Cevallos et al.’s scheme [12] will lose the ability
to identify potential cheaters using Reed-Solomon error correction. This will imply
that short keys and tags for the MAC will be no longer secure (the security will
then come exclusively from the employed MAC). Therefore, if we modify Cevallos et
al. [12] to work as a standard SSCI scheme, it will become equivalent to Choudhury’s
scheme for a single secret.

Let t be the number of cheaters, |V;| — the size of a share for every player P;, m —
the number of players involved in the reconstruction phase. We summarize the SSCI
schemes of [10,11] and the RSS scheme of [12], and compare them to our proposal
in Table 1, unifying the parameters of all these schemes, for the convenience sake.

From Table 1, we observe that Obana’s scheme [10] achieved the nearly optimal
share size, since the lower bound on the share size is |V;| > |S|T_1 + 1 according to [9].
However, recall that [10] can only deal with non-rushing adversary. Choudhury’s
scheme [11] is (almost) asymptotically optimal for large secrets, and it has a de-
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Table 1. Comparison of Our Proposal to Existing SSCI schemes.

Pl
Scheme # Cheaters Share Size Adversary # Players .
at Reconstruction
Obana [10] t<k/3 [Vi| =15|/¢ Non-rushing m >k
Choudhury [11] ¢t < k/2 |Vi| = |S|(t + 1)3" /¥ Rushing m >k
Cevallos et al. [12] t<n/2 |Vi| =|S|[log|S]| - (t + 1)(%)“31]3" Rushing m=
Our Proposal t<k/3 [Vi| = |S|/e" " H! Rushing m >

sirable property of identifying rushing cheaters from the minimal number of shares
k. However for a single secret, the share size of this scheme (that is |S|(i+nl)dn) is
far from optimal. Cevallos et al. [12] scheme working with a single secret achieves
nearly optimal share size. However, their scheme requires more than k + t players
to identify ¢ rushing cheaters.

Now, an interesting open question is to introduce a secret sharing scheme (with
share size smaller than those of the above schemes) for a single secret with the
property that only k players can identify rushing cheaters. Our proposal fills this
gap for t < k/3.

1.3 Owur Result

We present an SSCI scheme with public cheater identification which is a k-out-of-n
secret sharing identifying up to ¢ < k/3 rushing cheaters. The share size of our SSCI
scheme is |V;| = |S|/e" "+, its parameters are summarized in Table 1.

Note that in Table 1, we provide the share size of Choudhury’s scheme [11] for the
case of a single secret (I = 1). As we mentioned before, if the scheme by Cevallos et
al. [12] is modified to be an SSCI with the property of identifying cheaters from the
minimum number of shares, it will turn into Choudhury’s [11] scheme with [ = 1.

We emphasize that all the schemes mentioned in Table 1 are not directly com-
parable, however we list them together since they provide the same functionality.
Hereby, it will help the reader to place our contribution in the context of SSCI and
related schemes.

Our contribution is to achieve a tradeoff among the existing secret sharing
schemes with cheaters, in terms of tolerable cheaters (¢), required players at re-
construction (m), and the share size (|V;|). Hereby we fill the following gap: When
the number of rushing cheaters is less than k/3 and only k players take part in the
reconstruction, our SSCI scheme is superior to the existing schemes in terms of share
size.

The closest related work is the one by Choudhury [11] so that we will now provide
a detailed comparison with this scheme. The share size of our scheme is gﬁt)iﬁ times
smaller than that of [11] (in the case of a single secret). This advantage comes for
the price of strengthening requirements on the number of cheaters, that our scheme
can tolerate, to t < k/3.

Let us elaborate more on the savings in the share size that we obtain by providing
a specific example. Let us consider the bit length to be added for the sake of cheater
identification (we will call it redundancy) — it will be computed by taking a logarithm
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of |V;| and subtracting log |S|. Then the bit length of redundancy in Choudhury’s
scheme and ours are respectively:

1
Redcp, = 3nlog(t + 1) + 3nlog(-), (2)
€
1
Redoy, = (n—t+1) log(z). (3)

From the above equations we can see that asymptotically, our scheme adds at
least 3 times less redundancy as compared with Choudhary’s scheme if % >>n. In
Table 2, we compare the redundancy of our scheme to that of [11], fixing the cheater
success probability € to be 278, For simplicity, we take ¢t = |(n — 1)/3], although
the maximal tolerable number of cheaters ¢ is |(k — 1)/3] and |(k — 1)/2] in our
scheme and in [11], respectively. We can see from Table 2 that as n grows larger, our
scheme needs less and less redundancy as compared with [11]. In particular, even
for n = 4, our scheme will need 26.7 bytes of redundancy, which is still 4.5 times
less than 120.6 bytes needed for Choudhary’s scheme. We emphasize again that the
reduction of share size comes for the price of sacrifice on the number of tolerable
cheaters.

Table 2. Redundancy Needed for Cheater Identification when t = |(n — 1)/3], e = 275,

n Redcho Redour RedCho/RedoW
4 120.6 B 26.7 B 4.5

1024 33.2 KB 6.7 KB 5.0

218 9.0 MB 1.7 MB 5.4

Our scheme (as well as [11] and [12]) has two rounds. In fact, it is round-optimal
since Cramer et al. [15] showed that two rounds of communication is necessary in the
rushing adversary model, if the secret sharing scheme requires an agreement among
all honest players. Since our scheme is public cheater identifiable, an agreement
among all honest players must indeed be achieved.

2 Preliminaries

Let us first fix some notation. Set [n] = {1,2,...,n}. The cardinality of the set X
is denoted by |X|. Let F, be a Galois field of a prime order p satisfying p > n. All
computation is done in the specified Galois fields.

2.1 Security Model and Communication Model

Throughout the paper, we consider an active rushing adversary with unbounded
computational power. By being rushing we mean that the adversary can observe the
information sent by all the honest players at each communication round, prior to
deciding on her own messages. The adversary can adaptively corrupt up to t players
(which then will be called cheaters) during the whole protocol execution provided
that ¢ < k/3, where k is the threshold of the secret sharing scheme. As usual in
SSCI schemes, we assume that adversary cannot corrupt the dealer D.
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We assume that the entities are connected pairwise by private and authenticated
channels, and also that broadcast channel is available.

2.2 Secret Sharing

The n players are denoted by { Py, P, ..., P,}. Let s be the secret chosen by D from
some distribution S, and let o; be the share distributed to player P;. The set of P;’s
possible shares is denoted by V;. By a slight abuse of notation, we also use S to
denote the random variable induced by s and V; as the random variable induced by
0;.

First, we describe k-out-of-n secret sharing scheme by Shamir [1]. A k-out-of-
n secret sharing scheme involves a dealer D and n participants {Pi, ..., P,}, and
consists of two algorithms: ShareGen and Reconst. The ShareGen algorithm
takes a secret s € I, as input and outputs a list (o1, ..., 0,,). Each o; is distributed to
participant P; and called her share. The algorithm Reconst takes a list (oy, ..., 0.,)
as input and outputs the secret s if m > k. Otherwise, the Reconst outputs L.
Formally, the properties of correctness and perfect secrecy hold:

1. Correctuness: If m > k, then Pr[Reconst(oy,...,0,) =s] =1,

2. Perfect secrecy: If m < k, then Pr[S = s|(V} = 01,...,V;y = op)] = Pr[S = 5]
for any s € S.

In Shamir scheme, the above mentioned algorithms proceed as follows:

ShareGen:

1. For a given secret s € IF,,, the dealer D chooses a random polynomial f(x) €
F,[X] with degree at most k — 1 and f(0) = s.

2. For i € [n], compute 0; = f(z;) for a fixed z; € F,, (where x; can be seen as a
unique identifier for P;) and send o; privately to participant P;.

Reconst:
If m > k then output the secret s using Lagrange interpolation formula, otherwise
output L.

Remark 1. For simplicity of our presentation, we will henceforth write the identifier
of P; as 7, rather than z;.

Next, we formalize k-out-of-n SSCI schemes. As compared to ordinary secret
sharing schemes, we require that the reconstruction algorithm Reconst both com-
putes the secret and identifies incorrect shares that point at cheaters among the
involved participants. The output of Reconst algorithm is a tuple (s, L), where s’
is the reconstructed secret and L is the set of cheaters, moreover s’ = s except with
negligible probability. If a secret can not be reconstructed from the given shares,
then s’ is set to L, while L = () denotes the fact that no cheater is identified.

Definition 1. A k-out-of-n SSCI scheme X is a tuple
(n,k,S,V, ShareGen, Reconst) consisting of :

— A positive integer n called the number of players;

— A positive integer k denoting the number of honest shares from which the original
secret can be reconstructed;

— A finite set S with |S| > 2, whose elements are called secrets;

— A finite set V= {V1,Va, ..., V,,}, where V is the set of player P;’s shares.
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— An algorithm ShareGen, that takes as input a secret s € S, and outputs a vector

of n shares (01,09,...,0,) € Vi X Vo X -+ X V,,; and
— An algorithm Reconst, that takes as input a vector (o},,0;,,...,0; ) € V; X
Vi, X --- x Vi and outputs a tuple (s', L), where s’ is the reconstructed secret

and L is the set of identified cheaters.

Remember that ¢ denotes the maximum number of cheaters that a rushing ad-
versary can corrupt. We assume that the players in A® = {P,  P,,,...,P,} are
corrupted by the rushing adversary. In the SSCI scheme, a cheater P; (1 < j <)
succeeds if Reconst fails to identify F;; as a cheater when P;, provides a forged
share. Note that if P, succeeded in cheating, then the reconstructed secret s’ is
different from the original secret s. Without loss of generality, we assume that at

the reconstruction, the corrupted players P;’s are those with the smallest i’s in [n].

Definition 2. The successful cheating probability of player P, € AW against the
SSCI scheme X = (n,k, S, V, ShareGen, Reconst) is defined as

(2, AV P)
= Pr[(s, L) <~ Reconst(d} ,0},,...,0},,0i,,,...,04,) NP, ¢ L: o} #0;].

729

(4)

Remark 2. In Definition 2, we set e(X, A®), Pi;) to be the successful cheating prob-
ability of an individual cheater P;,. Since at most ¢ players can be corrupted, the
overall failure probability for the SSCI scheme (i.e., the probability that at least
one cheater in A® succeeds) can be upper-bounded using the union bound. We
choose the individual successful cheating probability instead of the overall failure

probability to be in accordance with the definition of Obana [10].

Definition 3. A k-out-of-n SSCI scheme X = (n, k,S,V, ShareGen, Reconst) is
called (t,€) SSCI scheme if the following properties hold:

1. Perfect secrecy: At the end of the algorithm ShareGen, any set of players of
size at most k — 1 have no information about the secret s.

2. e-Correctness: €(X, A P,) < e for any A denoting the set of t or less rush-
ing cheaters, for any cheater P; € AW If at least k honest players join the
reconstruction protocol, the secret will be correctly recovered unless the cheaters
remained detected.

Remark 3. Note that if at least k£ honest players take part in the reconstruction
protocol, successful identification of cheaters is equivalent to recovering the original
secret. The secret is not correctly recovered if and only if one or more cheaters are
undetected. However, if less than k& honest players are available, our scheme can only
identify the cheaters with overwhelming probability without recovering the original
secret. This is an intrinsic limitation of SSCI schemes since we only require k players
to identify the cheaters.

Remark 4. Our protocol, as well as the works of [4,10-12], prevents false positive
error, i.e., honest participants will never be identified as cheaters.
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2.3 Reed-Solomon Error Correction

Let f(z) € F,[X] be a polynomial of degree at most k. Let xy, 29, ..., x, € F,, for
n > k, be pairwise distinct interpolation points. Then C' = (f(x1), f(z2), ..., f(zy))
is a codeword of Reed-Solomon error correction code [16]. Reed-Solomon code can
correct up to ”T_k erroneous symbols, i.e. when t out of n evaluation points f(x;)
(1 <4 < n) are corrupted, the polynomial can be uniquely determined if and only
if n —k > 2t. Note that there exist efficient algorithms implementing Reed-Solomon
decoding, such as Berlekamp-Welch algorithm [17]. We refer the reader to [18] for

details on Reed-Solomon codes.

3 Our Proposal

In this section, we describe our k-out-of-n SSCI scheme secure against ¢ < k/3 rush-
ing adversary. We suppose that m > k participants take part in the reconstruction
phase.

3.1 Overview

Our proposal departs from Obana’s scheme [10] and improves it in the following
manner. Consider k-out-of-n Shamir secret sharing. Since the maximum number of
cheaters is |(k — 1)/3] and at least k players will take part in the reconstruction
phase, Obana [10] uses a polynomial of degree ¢ to compute authentication tags for
each player’s share. The degree-t polynomial can be recovered given at least £ > 3t+1
players’ tags, t of which might be corrupted, using Reed-Solomon decoding (with
probability 1). In this scheme, protection against rushing adversary is not provided,
since the latter can see all the tags of the k players and recover the polynomial (since
k > t+1). In other words, the adversary can recover the authentication key, so that
she will be able to forge authentication tag for an arbitrary value submitted as her
share.

In order to deal with this problem, we split the reconstruction phase into two
rounds. In the first round, only the Shamir shares and masked authentication tags
are revealed. Then in the second round, the masking key will be submitted by each
player. We share the masking key between all the n players using a (¢t + 1)-out-
of-n Shamir secret sharing, such that any ¢ corrupted players can neither get any
information about the key nor alter it in the reconstruction phase.

Unfortunately, the necessity to share the masking keys takes the share size of our
scheme away from the optimal bound. However, we observe that there is no need to
mask all of the authentication tags: since the knowledge of any ¢ of them gives no
advantage to the adversary, it suffices to mask only n — ¢ of them.

3.2 Our Scheme

Let ¢ be a prime power such that ¢ > n-p and let ¢ : F, x [n] — F, be an injective
function.
Our proposed scheme is described below.

Protocol 1 (ShareGen)

Input: Secret s € F,,.
Output: A list of n shares o1, 09,...,0,.

A dealer D performs the following:
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1. Generate a random degree-(k — 1) polynomial f,(z) over [F,, such that f(0) = s.
Compute vs; = fs(i), for i =1,2,... n.

2. Select a random degree-t polynomial g(z) over F,. Compute v.; = g(¢(vs,,17)).

3. (a) For i =1,2,...,t: Set To; = v
(b) For i =t +1,t+2,...,n: Randomly and uniformly generate a key k; € F,
and compute vU,; = v; + k;.

4. Fori =t+1,t+2,...,n: Generate a random degree-t polynomial h;(x) over I,
such that h;(0) = k;. Compute k; ; = h;(j), for j =1,2,...,n.

5. For i € [n], set 0; = {vs4, Ve, kt41,is - - -, kni} and distribute it privately to player
P

Remark 5. Note that in Step 2, we must combine player’s share vs; with her iden-
tifier 7 before authentication, since otherwise a cheater can “steal” a share and its
authentication tag from some other player pretending that she has received the same
share without being detected. However, when we authenticate the combination of
the share and the identifier of a player, which is ¢(v,;, 1), the entities to be authen-
ticated will be distinct for every player even if they received the same share, since
¢(-,-) is an injective function.

Let CORE = {i1,1s,...,iy} be the set of identifiers of the m participants who
want to recover the secret. Moreover, let o7 = {v,; ,vi; ki1, kp; } for each
i; € CORE. Furthermore, at most ¢ out of m shares can be corrupted in a rushing
fashion.

Protocol 2 (Reconst)

Input: A list of m shares (0} ,07,,...,0; ), where m > k.

227 Tm

Output: Either (L, L) or (¢, L), where L is the list of cheaters.
Communication rounds performed by each player i; € CORE:

/ /
1. Announce {v; v, }.

/ / /
2. Announce {kyyy; ki oo kb

Computation by players in CORE:

1. Foreachi; € CORE(\{t+1,t+2,...,n}, reconstruct k:z'-j from {k£j7i17 . kgﬂm}
using Reed-Solomon decoding.

2. For iy € COREN{1,2,...,t}, set v, = vl ;
Fori; € CORE({t+1,t+2,...,n}, compute v; = E — ki,

3. Reconstruct ¢'(z) from v, , v, ..., v, using Reed-Solomon decoding.

4. Check if v ; = ¢'(¢(v,,,1;)) holds for 1 < j < m.
If vy, # 9'(¢(v;,, ;) then i; is added to the list of cheaters L.

5. If |L| > m — k then output (L, L), otherwise:
Reconstruct f{(z) from (k or more) shares v;; such that i; € CORE\ L using
Lagrange interpolation.

If deg(f!) <k — 1, output (f.(0), L), otherwise output (L, L).

Note that the condition |L| > m — k in Step 5 means that the number of honest
players is less than k.
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Remark 6. For simplicity of our presentation, in the above protocol, we omitted the
check similar to that in Step 4, which must be performed in Step 1. In details: When
reconstructing in Step 1 the polynomial h;, () (the one used to share the key k;;)
with Reed-Solomon decoding, we must check whether P; provided a forged share
ki,; # ki;i and put her into the list L, if this is the case. However, we note that
in this step, under assumption that ¢ < k/3, the cheaters who submitted a forged
share will be identified with probability 1.

4 Security Proof

The security of our SSCI scheme is argued in the following theorem.

Theorem 1. If t < k/3 then the scheme described above is a (t,e) SSCI against
rushing adversary such that

|S| =p, 6:1/q7 anp’ |‘/z‘ =p- n t+1 |S|/€n t+1 (5)

Proof. First, we show that the scheme satisfy perfect secrecy. Suppose that k£ — 1
players {P;,, P;,,..., P, ,} want to get the secret from their shares. Denote by
o, = {USJJ.,Uch?kt_FLZj, . ,kmj} the share of player P;,. Due to the secrecy of
Shamir scheme, the values (vs;,,Usjy,---,Vs4,_,) do not reveal any information
about the secret. Moreover, it is easy to see that the knowledge about v.;; and
(ktﬂ,ij, Ktiou;,- -, k;mj) does not leak any information about the secret since the
polynomial g(x) and the masking keys (kyv1, k1o, ..., k,) are chosen independently
of the secret s.

Next we show that our scheme is e-correct. Our proof follows the lines of [10].

Let us observe the following two facts:

1. For xy,...,x, € Fy, (g9(x1),9(x2),...,9(xx)) is a codeword of the Reed-
Solomon code with minimum distance k& — ¢ (since deg(g(z)) < t). According to
the Reed-Solomon error correction, if k —¢ > 2t (i.e., t < k/3) the degree-t poly-
nomial g(x) can be correctly reconstructed from the k& points even if ¢ of them are
forged. For the same reason, the masking keys (k¢i1, kiyo, ..., kn) can be correctly
recovered by k players.

2. The set of functions {g(z)|g(z) € F,[X],deg(g(x)) < t} is a class of strongly
universal;;; hash functions F, — F, [19]; that is, the following equality holds for
any distinct @1, . .., 2, 2441 € Fy and the following yi, o, ..., Y, Ye+1 € Fye

Prlg(ziy1) = pial9(z1) = 1, 9(x1) = w2, .- - 9(2) = ye] = 1/q. (6)

Let us suppose without loss of generality that the rushing adversary corrupts
P,,....,P, and COREN{L,2,...,t} = {i1,i2,...,4} (I <t). Remember that since
the adversary is rushing, she can see all the communication of honest players during
each round, prior to deciding her own messages. We summarize the view of the
adversary in Table 3.

Suppose Pi. € {F;y, Piy, ..., P, }, who knows the values 0;,, 0i,, ..., 0;,, submits
a forged share o], = (v’ K. k. ... R* is not identified as a cheater

8,0k cz*’ zH—lz*?"’? T,

such that v, = g(@(v,,,,ix)) + ku. At the end of the

first round, P;, has to hand in the values (v,,,v... ). At that time, she can see

82*7 C7,>k

only if he submlts v/

C’L*
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Table 3. Adversary’s View in Reconst.

First Round: Second Round:

(Vs,i15 Veyig s kit+1,i1 yooe s Kiniy) (Vs,i15 Veyig s kit+lvi1’ ooy ki )

(vsait s Ue,igs kit+1,it7 EERE) kin,it) (,Usvit y Ucyigs kit,+1»it7 ) kimit)

(vsvit+1 ) vc,it+1) (Usvit+1 s Veyigqns kil+lvit+1 s kimwiti»l)

(vsa’im ) Ucaim) (,US7,L‘7YI, CLR ) k’il+1,’im7 e k’im ,’im)
(Uc,ila vc,iga .. ;Uc,im)a (kit+1,i17 kit+1,i27 DR k:itJrl,it)a ey (kin,ilu kin,i27 ceey kin,it>' From
(Kjivs kjigs -5 kji,), (t+1 < j <mn) the cheater P, can have no information about

the masking key k; since it is shared by the (¢ 4 1)-out-of-n Shamir scheme. For any
ij € CORE(W{t+1,t+2,...,n}, Uy, = g(P(vsy,,15)) +ki; looks like a random value
to P, since k;; will not be revealed until the second round, and before it serves as
a one-time pad. For i; € {i1,42,...,4}, P will see the values of the function g(z),
namely g(¢(vs,i;,%j)) = vei; for 1 < j <1, and [ <t. After the second round, all the
keys ki, ., ki 5 - - ki, can be correctly reconstructed — since the polynomial h;(x)
hiding k;; is of degree t and ¢t < k/3, we can use Reed-Solomon error correction
algorithm to recover the key k;; despite possibly ¢ corrupted shares of k;;. By the
similar reason, the polynomial g(x) can be correctly reconstructed as well. Since
P,, submits the forged share o/, = (v.,,, V..., ki ..., ki ..) before he knows the

s,0%) Vi V41,00
corresponding masking keys, the following holds:

Pr(g($(v] s %)) = Ve — Kis | 9(0(Vs015) = Ve, 1 1 <G < LI <] < 1/g, (7)

where the probability is taken over the random choice of g(x), and k11, kiya, . - -, kn,
and hyyq(x), hyro(2), ..., hy(z). From the above discussion we can see that any
cheater will be identified except with probability at most 1/q. Therefore, our SSCI
scheme satisfies the e-correctness property with € = 1/q.

It is easy to compute the share size as |V;| = p - ¢" ! = | S| /"1

5 Conclusion

We proposed an SSCI scheme capable of identifying ¢ < k/3 rushing cheaters. Our
scheme is superior to that of Choudhury [11] (for the single secret) and Cevallos et
al. [12] (if no more than k players can take part in the reconstruction phase), when
the number of cheaters is less than k/3.

According to the lower bound (1) from Kurosawa et al. [9], our scheme is not
optimal in the sense of share size |V;|. It is an interesting open problem to design
an SSCI scheme against ¢ < k/2 (or at least ¢ < k/3) rushing cheaters with optimal
(or at least constant in n, k and t) size of |V;|, even for sharing of a single field
element.
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