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Abstract. In this paper, we consider the problem of (t, δ) robust secret
sharing secure against rushing adversary. We design a simple t-out-of-
n secret sharing scheme, which can reconstruct the secret in presence
of t cheating participants except with probability at most δ, provided
t < n/2. The later condition on cheater resilience is optimal for the case
of public reconstruction of the secret, on which we focus in this work.

Our construction improves the share size of Cevallos et al. (EUROCRYPT-
2012) robust secret sharing scheme by applying the “authentication tag
compression” technique devised by Carpentieri in 1995. Our improve-
ment is by a constant factor that does not contradict the asymptotic
near-optimality of the former scheme. To the best of our knowledge, the
proposed scheme has the smallest share size, among other efficient rush-
ing (t, δ) robust secret sharing schemes with optimal cheater resilience.
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1 Introduction

Secret sharing scheme is one of the key components in various cryptographic
protocols and in particular distributed systems. Shamir [26] and Blakley [4]
independently addressed this problem in 1979 when they introduced the concept
of the threshold secret sharing. A (t, n) threshold scheme is a method where n
pieces of the secret, called shares are distributed to n participants so that the
secret can be reconstructed from the knowledge of any t + 1 or more shares,
while it cannot be reconstructed from the knowledge of fewer than t+ 1 shares,
where t + 1 ≤ n. More formally, in a secret sharing scheme, there exist a set of
n parties, denoted by P = {P1, . . . , Pn} and a special party called the dealer,
denoted by D. A (t, n) threshold secret sharing scheme consists of two phases:

1. Sharing Phase: During this phase, the dealer D shares the secret among
the n participants. In this phase the dealer sends some information, known
as share, to each participant.

2. Reconstruction Phase: In this phase, a set of parties (of size at least t+1)
pool their shares to reconstruct the secret.

In the sharing phase, the dealer wants to share the secret in such a way that
satisfies the following two conditions:

1. Correctness: Any set of t+ 1 or more parties can reconstruct the secret by
pooling their shares.

2. Secrecy: Any set of t or less participants can not reconstruct the secret.
Moreover, for perfect secrecy, any set of t or less participants will have no
information regarding the secret.

In the basic form of secret sharing schemes, it was assumed that everyone
involved with the protocol is semi-honest. But for the real life scenario, this as-
sumption may not hold good due to the presence of adversary. This idea leads
to the development of secret sharing under various adversarial models. It may
happen that some participants behave maliciously during the execution of the
protocol. Malicious participants may submit incorrect shares resulting in incor-
rect secret reconstruction. Secret sharing schemes that either detect or identify
participants who submit incorrect shares during the recovery of secret have been
extensively studied. Tompa and Woll [28] first presented a cheater-detecting se-
cret sharing scheme and this work is followed by several other works (for exam-
ple, [1], [2], [11], [6], [23], [24]). McEliece and Sarwate [21] were the first to point
out cheater identification in secret sharing schemes and this work is followed by
several other works (for example, [17], [22], [8], [31]). Verifiable secret sharing
schemes [12] have been proposed for environments where the shares given to
participants by the dealer may not be correct i.e., the dealer of these shares
may be corrupted. These typically involve protocols that can be performed by
various subsets of participants in order to check that the shares they possess are
consistent in some sense. While such schemes make it apparent that cheating has
occurred, they do not necessarily permit honest participants to recover the cor-
rect secret. This observation led to robust secret sharing schemes [25]. Informally,
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robust secret sharing schemes allow the correct secret to be recovered even when
some of the shares presented during an attempted reconstruction are incorrect.
In this paper, we deal with robust secret sharing schemes. More specifically, we
show that the share size in Cevallos et al. scheme [5] can be further reduced.

1.1 State of The Art & Our Contribution

In case of up to t cheaters among n (≥ 3t+ 1) participants, it was observed by
McEliece and Sarwate [21] that Shamir secret sharing scheme [26] is robust via
its connection to Reed-Solomon codes. However, for the case when n = 2t + 1,
the above observation does not work. One solution to this problem, considered
e.g., by Rabin and Ben-Or [25] is for the dealer to authenticate shares using
some message authentication code [30].

In perfectly secure (even not robust) secret sharing schemes, the size of a
share is at least that of the secret. Therefore, the main point in optimization
of robust secret sharing is to reduce the overhead needed for ensuring robust-
ness while efficiently reconstructing the secret. If efficient reconstruction is not
required and n ≥ 2t+ 2 then one may use the ideal (i.e. without any overhead)
scheme by Jhanwar and Safavi-Naini [15]. The case n ≥ 2t+1 can also be handled
by the scheme of Cramer et al. [9] which features a constant overhead. Finally,
a (quasi-)linear overhead in the number of players and the security parameter
with efficient reconstruction was achieved by Cevallos et al. [5].

In this paper, we show that the overhead in Cevallos et al. scheme [5] can
be further reduced by applying an authentication tag compression technique by
Carpentieri [7]. The later technique was in fact proposed for improving the share
size of the Rabin and Ben-Or scheme [25], which was a basis of Cevallos et al.
construction. Since the scheme [5] is nearly-optimal, we achieve a constant factor
improvement in the overhead. For example, for t ≤ 2 we improve the overhead
of Cevallos et al. by the factor of about 2/3.

Table 1. Comparison of Our Proposal to Existing Efficient Robust Secret Sharing
Schemes.

Scheme Overhead (bits)

Rabin and Ben-Or [25] 3nk
Cevallos et al. [5] 3nq

Proposed (2n+ t− 2)q

Here, k is the security parameter and q, which depends on k, is the parameter associated
with the overhead (more specifically, the elements used to authenticate shares are
chosen from the field of size 2q).
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1.2 Applications of Robust Secret Sharing Schemes

In the information-theoretically secure setting, the most natural application of
robust secret sharing is related to the distributed information storage, such as
for instance, secure cloud storage. User’s data can be stored with several stor-
age providers in a shared form. Clearly, an ordinary Shamir secret sharing pro-
vides protection against passive attacks where unqualified coalitions of storage
providers may try to recover the secret. Also, reliability is ensured such that
an information loss at several (few enough) providers does not hinder the re-
construction. However, in case of active attacks, when provider(s) deliberately
submit incorrect shares, the recovery of a correct secret becomes crucial – and
this is exactly the scenario [29, 18], where robust secret sharing manifests its
importance.

Moreover, robust secret sharing is also related to Secure Message Transmis-
sion (SMT) protocols [13, 20]. Here, the sender is connected with the receiver by
n distinct channels, t of which are controlled by an adversary. SMT realizes a
private and reliable transmission in this setting. Finally, the techniques used in
robust secret sharing schemes may also be applied to realizing verifiable secret
sharing and secure multi party computation [25].

1.3 Roadmap

In section 2, the necessary prerequisites for the proposed construction are pro-
vided. In section 3, we discuss the related definition, the adversarial model and
authentication techniques. In section 4, our construction along with its security
proof is provided and finally we conclude in section 5.

2 Preliminaries

2.1 Message Authentication Codes

Carter and Wegman [30] invented unconditionally secure message authentication
code which is a tool that enables to verify the integrity of a message without
assuming any computational hardness.

Definition 1. A message authentication code (or MAC) for a finite message
space M consists of a function MAC :M×K → T for finite sets K and T . It
is called ε-secure if for all m,m′ ∈M with m 6= m′ and for all τ, τ ′ ∈ T :

P [MAC(m′,K) = τ ′|MAC(m,K) = τ ] ≤ ε,

where the random variable K is uniformly distributed over K .

Example: MAC : F× F2 → F with (m, (α, β))→ α.m+ β is a ε-secure MAC
with ε = 1/|F|, where M is a finite field F.
More generally, as first shown in [10], [16], [27]

MAC : Fl × F2 → F, ((m1, . . . ,ml), (α, β))→ Σl
k=1α

i.mi + β (1)

is a ε-secure MAC with ε = l/|F|.
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2.2 The Reed-Solomon Code

Let (a0, . . . , at) ∈ Ft+1 and f(x) = a0+a1x+. . .+atx
t ∈ F[X] be a polynomial of

degree at most t. Let x1, x2, . . . , xn ∈ F\{0}, for n > t, be distinct elements. Then
C = (f(x1), f(x2), . . . , f(xn)) is a codeword of Reed-Solomon error correcting
code [19] of the message (a0, . . . , at). Reed-Solomon code can correct up to e
erroneous symbols, i.e. when e out of n evaluation points f(xi) (1 ≤ i ≤ n) are
manipulated, the polynomial (i.e., the message) can be uniquely determined if
and only if n ≥ t+1+2e. Note that there exist efficient algorithms implementing
Reed-Solomon decoding, such as Berlekamp-Welch algorithm [3].

3 (t, δ) Robust Secret Sharing Scheme

In a (t, δ) robust secret sharing scheme, there exists a set of n participants,
denoted by P = {P1, . . . , Pn} and two special participants called the dealer and
the reconstructor, denoted by D andR respectively. A (t, δ) robust secret sharing
scheme consists of two phases:

1. Sharing Phase: During this phase, the dealer D shares the secret among
the n participants. In this phase the dealer sends some information, which
is known as share, to each participant.

2. Reconstruction Phase: In this phase, all the participants communicate
their shares to the reconstructor.

In the sharing phase the dealer, in presence of an adversary A who can
corrupt at most t participants, wants to share the secret s (∈ secret space) in
such a way that satisfies the following two conditions:

1. Privacy: Before reconstruction phase is started, the adversary has no more
information on the shared secret s than he had before the execution of shar-
ing phase. This is called perfect privacy.

2. Reconstructibility: At the end of reconstruction phase, the reconstructor
R outputs s = s′ except with probability at most δ.

3.1 Adversarial Model

The dealer D and the reconstructor R are assumed to be honest. The dealer
delivers the shares to respective participants over point-to-point private channels.

We assume that A is computationally unbounded, active, adaptive, rushing
adversary who can corrupt up to t < n/2 participants (but neither D nor R).
Once a participant Pi is corrupted, the adversary learns her share and internal
state. Moreover from that point onwards, A has full control over Pi. By being
active, we mean that A can deviate from the protocol in an arbitrary manner.
By being adaptive, we mean that after each corruption, A can decide on whom to
corrupt next, depending on the information she has obtained so far. During the
reconstruction phase, the adversary gets to see the communication between all
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participants Pi and the reconstructor R. By assumption, the adversary controls
the information that the corrupted participants send to R. By being rushing
we mean that in every communication round, A can decide the messages of
corrupted participants after seeing the messages of honest participants.

Note that assuming R to be honest is equivalent to assuming a broadcast
channel available to each participant. In the later case, each participant sim-
ply broadcasts her share, executes the reconstruction algorithm and output the
result.

3.2 Share Authentication

Suppose the dealer D wants to share the secret s with the help of a polynomial
f(x) of degree at most t over a finite field F as in Shamir scheme [26]. Then
the share of a player Pi is just f(αi), where αi is a publicly known non-zero
field element. Now, if there are some malicious participants, who can alter the
original share at the time of reconstruction, the correctness may not hold good.

Let si be the Shamir share for the player Pi. For every pair of players Pi and
Pj , Pi’s Shamir share si is authenticated to the player Pj with an authentication
tag τi,j obtained by message authentication code, where the corresponding au-
thentication key kj,i is held by player Pj . Specifically, this step may be done by
choosing kj,i = (gj,i, bj,i) uniformly at random from F× F and then computing
τj,i = sigj,i + bj,i.

This similar method was used by Rabin and Ben-Or [25], but Carpentieri [7]
observed that the authentication tags can be compressed as follows. Instead of
first choosing the authentication key and then calculating the authentication tag,
one may first fix the authentication tag and then may find the authentication
key.

In Rabin and Ben-Or setting, for pairwise authentication, each player will
get n − 1 keys and n − 1 tags. By using the above trick, one may, instead
of sending n − 1 tags to each player, send a seed ci to player Pi. Then, the
necessary authentication tags will be generated from the seed ci together with
some public information. In fact, the seed for Pi is ci = (di,1, . . . , di,t), where di,j
for j ∈ {1, . . . , t} is randomly chosen from F and the authentication tag of Pi

against Pj ’s key is τi,j = αidj,1 + α2
i dj,2 + · · ·+ αt

idj,t. Compared to the setting
of Rabin and Ben-Or, each player now gets a seed of t field elements from which
the n− 1 authentication tags are generated. Thus, the share size of each player
is reduced by n− t− 1 field elements.

4 Optimal Cheater Resilient Robust Secret Sharing with
Improved Share Size

The paper [5] can be considered as an adaptation of the Rabin and Ben-Or [25]
scheme with modified reconstruction technique (against rushing adversary). In
our proposal, we use the share authentication method derived from that of [7] (as
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described in the previous section) and adapt it to the reconstruction technique
of [5].

4.1 Proposed Scheme

– Initialization: For i = 1, . . . , n, let the distinct elements αi ∈ F2m \ {0}
be fixed and public. Moreover, let αi be also non-zero and distinct in F2q ,
where m, q are two positive integers and the cardinalities of both fields are
larger than n.

– Sharing Phase:
• The dealer D chooses randomly a polynomial f(x) ∈ F2m [X] of degree

at most t, where f(0) = s is the secret to be shared, and computes
f(αi) = si in F2m , where i = 1, . . . , n.

• If q < m, we let l = m/q (for simplicity, assuming that l is an integer)
and sj = sj,1|| . . . ||sj,l.
D chooses randomly di,1, . . . , di,t and gi,j from F2q , and computes

bi,j =

{
gi,jsj +Σt

k=1α
k
i dj,k for q ≥ m

Σl
k=1g

k
i,jsj,k +Σt

k=1α
k
i dj,k for q < m

where j = 1, . . . , i− 1, i+ 1, . . . , n and i = 1, . . . , n.

• D privately sends to each Pi the share

Si = (si, di,1, . . . , di,t, gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n,

bi,1, . . . , bi,i−1, bi,i+1, . . . , bi,n).

– Reconstruction Phase:
• Round 1: Each Pi sends (s′i, d

′
i,1, . . . , d

′
i,t) to the reconstructor R.

• Round 2: Each Pi sends
(g′i,1, . . . , g

′
i,i−1, g

′
i,i+1, . . . , g

′
i,n, b

′
i,1, . . . , b

′
i,i−1, b

′
i,i+1, . . . , b

′
i,n)

to the reconstructor R.
• Computation by R:

1. R sets vij , i, j ∈ {1, 2. . . . , n}, to be 1 if Pi’s authentication tag is ac-

cepted by Pj , i.e., if b′i,j =

{
g′i,js

′
j +Σt

k=1α
k
i d
′
j,k for q ≥ m

Σl
k=1g

′k
i,js
′
j,k +Σt

k=1α
k
i d
′
j,k for q < m

,

otherwise she sets vij to 0.
2. R computes the largest set I ⊆ {1, 2, . . . , n} with the property that

∀i ∈ I : |{j ∈ I|vij = 1}| = Σj∈Ivij ≥ t+ 1.

Clearly, I contains all honest participants. Let e = |I| − (t + 1) be
the maximum number of corrupted participants in I.

3. Using the error correction algorithm for Reed-Solomon code, R com-
putes a polynomial f(x) ∈ F2m [X] of degree at most t such that
f(αi) = s′i for at least (t+ 1) + e

2 participants i in I.
If no such polynomial exists then output ⊥,
otherwise, output s = f(0).



8 P. S. Roy, A. Adhikari, R. Xu, K. Morozov, K. Sakurai

Remark 1. In the proposed scheme, a tradeoff between cheating probability and
share size can be arranged. So, within the natural restrictions, the parameters
can be set flexibly. Hence, q can be smaller or larger than m.

4.2 Security Proof

Lemma 1. The above scheme provides perfect secrecy, i.e. the adversary A con-
trolling any t participants during the sharing phase will get no information about
the secret s.

Proof: The dealer D shares the secret s through a polynomial f(x), where the
degree of the polynomial is at most t in x, and the share of each Pi is

Si = (si, di,1, . . . , di,t, gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n,

bi,1, . . . , bi,i−1, bi,i+1, . . . , bi,n).

Without loss of generality, we may assume that the first t participants P1, . . . , Pt

are under A’s control. Now, according to Lagrange’s interpolation, t + 1 such
values si fully define a degree-t polynomial. Thus, we need to choose one more
si, where i ∈ {1, 2, . . . , n} \ L and L = {1, 2, . . . , t}. Without loss of generality,
we may assume that i = t + 1. Let us now estimate the information regarding
st+1 which is available to each Pi, i ∈ L, via (gi,t+1, bi,t+1).
Case 1 (q ≥ m):

For all i ∈ L,

bi,t+1 = gi,t+1st+1 + αidt+1,1 + α2
i dt+1,2 + · · ·+ αt

idt+1,t.

So, for all i ∈ L,

bi,t+1 − gi,t+1st+1 = αidt+1,1 + α2
i dt+1,2 + · · ·+ αt

idt+1,t.

Note that the above system of linear equations is associated with the following
matrix, which is non-singular in F2q :

α1 α
2
1 . . . α

t
1

α2 α
2
2 . . . α

t
2

. . . . . . . . . . . .
αt α

2
t . . . α

t
t

 .
It is trivial to see that the linear system is consistent for all possible values

of st+1. Now, we conclude that A can guess the correct st+1 with probability at
most 1

2m as st+1 ∈ F2m .

Case 2 (q < m):
For all i ∈ L,

bi,t+1 = Σl
k=1g

k
i,t+1st+1,k +Σt

k=1α
k
i dt+1,k.
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Here q < m, l = m/q (for simplicity, l is assumed to be an integer) and sj =
sj,1|| . . . ||sj,l. So, for all i ∈ L,

bi,t+1 −Σl
k=1g

k
i,t+1st+1,k = Σt

k=1α
k
i dt+1,k.

Now, for any fixed value of st+1 = st+1,1|| . . . ||st+1,l, we can use the same ar-
gument as in Case 1 in order to show that the probability for A to guess st+1

correctly is at most (1/2q)l = 1/2m.

Lemma 2. Any corrupted participant Pi who submits s′i 6= si in Round 1 of the
reconstruction phase will be accepted by an honest participant with probability at

most ε =

{
1
2q for q ≥ m
l
2q for q < m

.

Proof: Without loss of generality, we assume that the corrupted participant is
P1 who submits s′i 6= si in Round 1 of the reconstruction phase.
Case 1 (q ≥ m):
P1 will be accepted by honest Pj if bj,1 = gj,1s

′
1 +αjd

′
1,1 +α2

jd
′
1,2 + · · ·+αt

jd
′
1,t.

Thus P1 has to guess gj,1 correctly. Now, let

gj,1s
′
i +Σt

k=1α
k
j d
′
1,k = gj,1si +Σt

k=1α
k
j d1,k.

Then,
gj,1 = (s′1 − s1)−1Σt

k=1α
k
j (d1,k − d′1,k).

Note that gj,1 is independent of all information that the adversary A has
obtained and gj,1 ∈ F2q . Thus, P1 will be accepted by Pj with probability at
most 1

2q ≥ Pr(v1j = 1). Therefore, any dishonest participant Pi submitting
s′i 6= si in Round 1 of the reconstruction phase will be accepted by a honest
participant Pj with probability Pr(vij = 1) ≤ 1/2q.
Case 2 (q < m):

P1 will be accepted by honest Pj if bj,1 = Σl
k=1g

′k
j,1s
′
1,k+Σt

k=1α
k
j d
′
1,k. As s1 6= s′1,

at least one of s1,k 6= s′1,k. Assume that only one s1,k 6= s′1,k. So, as in Case 1, P1

will be accepted by Pj with probability at most 1
2q ≥ Pr(v1j = 1). Taking into

account the union bound, P1 will be accepted by Pj with probability at most
l
2q ≥ Pr(v1j = 1). Therefore, any dishonest participant Pi submitting s′i 6= si
in Round 1 of the reconstruction phase will be accepted by a honest participant
Pj with probability Pr(vij = 1) ≤ l/2q.

Theorem 1. For any positive integer t such that n = 2t+ 1, the proposed con-
struction forms (t, δ)-robust secret sharing scheme for n participants with the
space of secrets F2m and

δ ≤ e.((t+ 1)ε)(t+1)/2

where e = exp(1) and ε =

{
1
2q for q ≥ m
l
2q for q < m

.

Proof:
Privacy: Follows from Lemma 1.
Reconstructability: From Lemma 2, we have found that Pr(vij = 1) ≤ ε. The
rest of the proof is the same as in [5, Theorem 3.1].
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4.3 Discussion

Let us compute the share size. During the sharing phase, each party gets one
element from F2m and 2n+ t− 2 elements from F2q . Therefore, the share size of
each participant is m+ (2n+ t− 2)q bits.

Consider the following instantiation. By Theorem 1, the resulting secret shar-
ing scheme is δ-robust for δ ≤ e.((t+ 1)ε)(t+1)/2. Therefore, for a given security

parameter k, setting q =

{
dlog(t+ 1) + 2

t+1 (k + log(e))e for q ≥ m
dlog(t+ 1) + log(l) + 2

t+1 (k + log(e))e for q < m
,

we obtain δ ≤ 2−k.
Every perfectly secure secret sharing scheme must have the share size at least

that of the secret. The first term in the sum is responsible for this, while the
second term characterizes an overhead required for the share authentication. In
Table 1, we compare the overhead of our scheme with those of the schemes by
Rabin and Ben-Or [25], and Cevallos et al [5]. We can see that when t ≤ 2, our
scheme reduces the overhead by the factor about 2/3 as compared to that of
Cevallos et al.

5 Conclusion

We have shown and analyzed a new robust secret sharing scheme, which combines
the techniques of [7] and [5] with an improvement of share size over the robust
secret sharing scheme of [5]. The scheme of [5] has nearly-optimal share size, so
that our improvement is by a constant factor. To the best of our knowledge, the
proposed scheme has the smallest share size, among other efficient (t, δ) robust
secret sharing schemes with optimal cheater resilience, secure against rushing
adversary.
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