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Abstract. In this paper, we formally prove that padding the plaintext
with a random bit-string provides the semantic security against chosen
plaintext attack (IND-CPA) for the McEliece (and its dual, the Nieder-
reiter’s) cryptosystems under the standard assumptions.

Such padding has recently been used by Suzuki, Imai and Kobara in the
context of RFID security. Our proof relies on the technical result by Katz
and Shin from Eurocrypt ’05 showing “pseudorandomness” implied by
learning parity checks with noise (LPN) problem.

‘We do not need the random oracles as opposed to the known conversions,
while the recent ones provide stronger protection (as compared to our
scheme) — against adaptive chosen ciphertext attack (IND-CCA2).

In order to show that the padded version of the cryptosystem remains
practical, we provide the estimates for suitable key size together with
corresponding work required for successful attack.

1 Introduction

The semantic security (a.k.a. indistinguishability) defined by Goldwasser and
Micali [12] is the security notion for a public-key cryptosystem (PKC) whose
intuitive meaning is that a ciphertext does not leak any useful information about
the plaintext but its length. For example, even if an attacker knows that the
plaintext is either “0” or “1”, the ciphertext does not help him almost at all. Since
this notion appeared, a number of semantically secure public-key encryption
schemes have been proposed [9, 3,4, 8, 18].

At the same time, the problem of enhancing the existing (not semantically
secure) cryptosystems with such useful property also arose. Two examples of such
schemes are the McEliece [16] and the Niederreiter [17] cryptosystems whose
security is ensured under the following two assumptions: a) hardness of the

The first author’s work has been done when he was at the University of Tokyo,
Japan.



syndrome decoding problem or, equivalently [20], the learning parity with noise
(LPN)" and b) indistinguishability of the scrambled generating matrix of the
Goppa code from random.* In these cryptosystems, efficiently decodable codes
such as Goppa codes [15] must be used in order to make them efficient and
secure. From the security point of view, these cryptosystems has a one-wayness
property. Informally, this means that given a randomly chosen ciphertext, it is
hard to completely recover the corresponding plaintext.

MoTIvATION: The main motivation to continue research on the McEliece cryp-
tosystem is the following: a) As it was pointed out in the original paper [16],
the hardware implementation of this PKC would be very fast as it only requires
matrix operations for encryption/decryption (as long as one can afford storing
keys of hundreds of kilobytes in size); b) Not only a public-key encryption but
also the other primitives (e.g., digital signatures [7]) can be built based on the
McEliece-style assumptions; c) this PKC is secure against quantum adversaries
that makes it a good candidate for the post-quantum world.

OUR CONTRIBUTION: Our main observation is that if some fixed part of the
plaintext is made random then due to the construction of the cryptosystem it
makes the ciphertext pseudorandom from the attacker’s point of view. As easy
as it looks, this fact, to the best of the authors’ knowledge, has not yet been
stated explicitly in the related literature. The paper fills this gap by providing
the formal proof of this fact, establishing connections to the adjacent areas of
cryptography and discussing the future research directions which this result in-
vokes. Additionally, we estimate the time-complexity of breaking this version of
the PKC (which we call the randomized McEliece cryptosystem) and show the
suitable size of a public-key for the practical use in this paper.

A bit more formally, let E,y, : {0,1}* — {0,1}" be an encryption algorithm of
the McEliece cryptosystem, m € {0,1}*2 a message, and r € {0, 1}** a random
sequence, where k = k1 + ko. Then, the ciphertext corresponding to m becomes
E, i ([r|m]), where [A|B] denotes a concatenation of two vectors (or, in general,
matrices) A and B.

In other words, we show that this padding yields an encryption secure under
chosen plaintext attack (IND-CPA), if the McEliece cryptosystem? is used, under
the standard assumptions.

SOME DETAILS: We note that the aforementioned scheme perhaps appear im-
plicitly or explicitly in many previous works. This paper was inspired by the
work of Suzuki, Kobara and Imai [22] where it was suggested (without a formal
proof) for increasing the security of encryption.¥

T This problem is known to be NP-complete [1].

¥ This has been believed to be true for a long time and was also utilized for crypto-
graphic applications, e.g., [7].

§ The same result follows for the Niederreiter cryptosystem due to their equiva-
lence [23], its formal proof appears in the full version of this paper.

T In fact, the Niederreiter cryptosystem was employed in this work.



The technical tool which we use to prove the security of our scheme is the
technical lemma by Katz and Shin [13] which established a pseudorandomness of
the queries to the oracle for LPN problem. The key difference from their setting
is that we have a generating matrix of the Goppa code (which is assumed to
be pseudorandom) instead of the oracle (which is equivalent to a random ma-
trix). The main technical result of our work, Lemma 2, states that substituting
a random matrix by a pseudorandom one preserves the pseudorandomness of
the output. Then, under the above assumptions the proof of Theorem 1 stating
semantic security of the McEliece cryptosystem with randomized plaintext fol-
lows as well as the similar result for the Niederreiter cryptosystem (the latter
will appear in the full version of this work).

RELATED WORKS: Regarding the conversions from one-way cryptosystems to
semantically secure ones, one must first mention the straightforward application
of Goldreich-Levin (hardcore) predicate theorem [11] or Yao’s XOR lemma which
would immediately imply the needed result. The obvious problem is that such
conversion is quite inefficient.

The list of more elaborated conversions employing random oracles include
(but is not limited to) [4,24, 25, 14]. The optimal asymmetric encryption padding
(OAEP) by Bellare and Rogaway [4] is the first result of such kind but it dealt
with one-way trapdoor permutations (while the cryptosystem we consider is only
a trapdoor function) and needed some fixing in the general case [26].

Fujisaki and Okamoto [24] and Pointcheval [25] independently suggested a
conversion from any one-way PKC to a PKC semantically secure against chosen
ciphertext attack (IND-CCA). Finally, Kobara and Imai [14] presented a more ef-
ficient conversion than the above two, tailored specifically for the McEliece cryp-
tosystem and arming the latter with the semantic security against adaptively-
chosen ciphertext attack (IND-CCA2). We note that all the proofs of security
for all the above mentioned conversions were in the random oracle model, while
our result does not need this assumption.

ORGANIZATION OF THE REST OF THE PAPER: In Section 2, we provide some basic
notation and definitions. In Section 3, the randomized McEliece cryptosystem
is formally described along with its underlying assumptions. The proof of IND-
CPA security of the randomized version is presented in Section 4. In Section
5, the security parameters for the presented scheme are estimated. Section 6
concludes our work and discusses the open questions.

2 Preliminaries

Throughout this paper, we consider k and n as security parameters. We denote
the probabilistic polynomial-time as PPT and we call the algorithm efficient if

its running time is polynomial. Let s & $ denote the operation of selecting s
uniformly at random from the set S. If D is a probability distribution over S then
s «— D denotes the operation of selecting s at random according to D. Let U,



denote the uniform distribution over {0, 1}". Let U, . be the uniform distribution
over r x ¢ random binary matrices and let &, ,, be the uniform distribution over
{0,1}™ of Hamming weight w.

A public-key encryption scheme is composed of a triplet of algorithms IT =
(Genyz,Encyr,Decyr). The key generation algorithm Genp is a PPT algorithm
which on input 1% (k € N) outputs a pair of public and secret keys, (pk, sk),
in polynomial time. We assume that the public-key pk defines a message space
denoted by M. The encryption algorithm Enc is a PPT algorithm which, on in-
put pk and a plaintext m € M, outputs a ciphertext ¢ € {0,1}*. The decryption
algorithm Decjy is a polynomial-time algorithm which takes sk and c¢ as input
and outputs a message m. We require that for any key pair (pk, sk) obtained
from Genjz, and any plaintext m € M, Decyr(sk, Ency(pk, m)) = m.

The semantic security against chosen-plaintext attack (IND-CPA) is one of
the most natural practical requirements for a public-key cryptosystem. Its intu-
itive meaning is that a ciphertext does not leak any useful information about
the plaintext but its length.

Let IT = (Geny,Encyr,Decyr) be a public-key encryption scheme and let
A = (A, As) be a PPT algorithm. For every k € N, we define

(pk, sk) «— Genp(1%),
(mo,m1) < A1(pk), |A2(y) = b

bE 10,1},
y < Encrr(pk,mp)

N

Adv"y (k) = Pr

Also we define the advantage function of the scheme as follows. For any t,
Advi™ (k,t) = maxa {AdviT (k) },

where the maximum is over all A with time-complexity ¢. We say that IT is
sem

semantically secure if the function Adviy™(+) is negligible for every algorithm A
which time-complexity is polynomial in k.

3 Randomized McEliece Cryptosystem

In the McEliece cryptosystem [16] (see Appendix A.1 for its description), if the
adversary obtains a ciphertext, say ¢, and he knows that ¢ is a ciphertext of
either mg or mq, then he can verify which one is a corresponding plaintext by
simply computing the weight of moG @ ¢ and check weight being w or not. To
avoid such the situation, concatenating a random sequence  to a message m and
encrypting [r|m] has been often employed. But there has been no formal proof
of this padding appeared in the literatures. In this paper, we prove the security
formally.

Let k1, ko € N be two integers such that k = k1 + ko and ky = bk, where b < 1
is a positive rational number, e.g., b = %. Here, we denote by k; the length of
the random string r and by ko the length of the message m. The encryption
algorithm just encrypts [r|m] instead of m itself. The decryption algorithm is
almost the same as Decyg. The difference is that it outputs only the last ko bits
of the decrypted string.



3.1 Security Assumptions

In order to prove the security of this scheme, we use the same assumptions as for
the original PKC. The short discussion to background their actuality is presented
in Appendix A.2. Let us establish here some relevant notation and facts.

Let D be a probabilistic algorithm. For every k € N, we define

Advip’s (k) = Pr [((G,w), sk) « Genyg(1¥) | D(G,w) = 1]
—Pr[R U, | D(R,w) =1].

Also we define the advantage function of the problem as follows. For any ¢,
AdvE? (k,t) = maxp {Adviy'G(k)},

where the maximum is over all D with time-complexity ¢t.

We conjecture that for any polynomially bounded ¢, Advicr}'d(k, t) is negligible.

This conjecture was also utilized in [7] to construct a digital signature scheme.
But we also need the following assumption known as the “learning parity with
the noise” problem. We employ the definition given in [13].

Let 7, a be binary vectors of length k and let z = (r, a), where (r, a) is the dot
product of r and @ modulo 2. Also we consider Bernoulli distribution By with
parameter 6 € (0, 3), and let Q, ¢ be the distribution defined by

{a —{0,1}",v — By | (a,(r,a) & v)}.
Let A be a probabilistic algorithm. For every k& € N, we define
AV (k) = Pr[r  {0,1)% | A% =]
We define the advantage function of the problem as follows. For any ¢t and g,
MGV (k1 q) = mascs {AavTERN (k) ]

the maximum is over all A with time-complexity ¢ and query-complexity q.

All known algorithms for solving this problem are still super-polynomial
time [2]. Especially, for fixed ¢ and small amount of noise, the best one is due
to Canteaut and Chabaud [5], its time complexity is roughly n®(1/2+o(1),

Also we can denote this problem in another way. Let ¢ = n. Then we can
rewrite this as follows: for any A,

Pr(R «— Upn,s —{0,1}F e — &0 | AR, w,sR D €) = 5]
< (n+1) - Advy TNy (k,t,n),
where we set w = |f(n + 1)]. Note that, in the above inequation, a random

noise e of weight w is added instead of the noise generated by the Bernoulli
distribution and this results in multiplication of (n 4 1) in the right-hand side.



This upper bound easily follows from the fact that, in the Bernoulli distribution,
the probability of the weight of e being |#(n + 1)] is at least n%_l

It is easy to see that if G looks like R, i.e. pseudorandom, and the LPN
problem is hard, then the McEliece cryptosystem has one-wayness.! But, with
these two — conjectured to be hard — problems, we can prove more useful result,
that is the semantic security of the randomized McEliece cryptosystem. The

proof is presented in the next section.

4 Semantic Security of the Randomized Version

Let us recall the form of the randomized McEliece cryptosystem: ¢ = [r|m]G @e.
Let G; and Gs be k1 x n and ko x n sub-matrices of G, respectively, such that
GT = [GT|G]. Then we can rewrite the above equation as follows:

c=[rmlGae={rG; ®e} ®&mGs,. (1)

Intuitively, the semantic security of the randomized McEliece cryptosystem is
ensured by the pseudorandomness of rGy & e. In the formal proof of this fact,
the following lemma, which states that the hardness of the LPN problem implies
pseudorandomness of the output, plays an important role.

In the following lemma, we set the length of a and r as k.

Lemma 1 (Lemma 1 in [13]). If there exists an algorithm which runs in time
t, makes queries q times and such that

Pr[r — {0,1}* | D90 = 1] — Pr [D"1+ = 1] >4, then

Advy gy (k1 L, qr) > 6/4, where tr, = O(tk10—>log k1), qr. = O(qd > log k1)

This is the key technical lemma which was rigorously proved in [13]. The next
corollary easily follows from the above lemma.

Corollary 1. Let O = Q, ¢ and Oy = Uy, 1. If there exists an algorithm which
runs in time t, makes queries q times and such that

r— Uk, b—U b=V 1
‘Pr|: Dé€;=b/ ! ]_2‘>5 (2)
then
Advi‘lljel\?gwaY(kl,tL,qL) >4/2. (3)

Let Ry and Ry be a k1 X n sub-matrix and a kg X n sub-matrix of a matrix

R, respectively, such that R” = [R¥|RZ]. Also let ¢ = n. Then, for the same

reason as noted in the previous section, we can rewrite the above inequations
(2) and (3) as

prl” — U, R1 — Ui, e — Ep | D(R1,w,85) =D _ 1 > ()

b<—ul,80<—un,81<—7"R1@€ 2
I Actually, there is a possibility that G is not pseudorandom but the McEliece PKC
has still has one-wayness.



and
2(n+1) - Advy'py, ™ (k1,17 q1) > 6, (5)

respectively, where ¢ = O(nd~2log k) and ¢/, is essentially the same as ¢1,. Also
note that this holds even if we modify the above inequation as follows: replace
D(R1,w,sp) = b with D(R,w, sp) = b, and Ry « Uy, , with R« Uy .

To prove the theorem, we need to replace the random matrix R with the
(pseudorandom) public-key matrix G. The next lemma states that exchanging a
truly random matrix with a pseudorandom matrix G preserves the pseudoran-
domness of the output s;.

Lemma 2. If there exists an algorithm D which runs in time t and such that

Pr [r — Uk, (G,w) «— GenME(lk), e —Ew| D(G,w),rG1 de) = 1]
—Pr [80 — Uy, (G,w) «— GenME(lk) | D((G,w), sg) = 1] >0, (6)

then
A(n+ 1) - Advip "™ (ka7 q7) + 2 - Advgd (k, ta) > 6.

Here t], q] and tg are essentially the same as t7, ¢ and t, respectively.

Proof. We will say that the algorithm D succeeds iff it outputs 1 when given
input was of the form rG; ® e. We denote this event by Succ. We construct an
adversary D’ which distinguishes the random matrix R from the matrix G as
follows.

D'(M, w)
Divide M into M; and Mj such that M7 = [M7 |MZ], M; is k1 x n sub-matrix
and M, is ko X n sub-matrix.
b — Z/ﬁ
Ifb=1
e« Epw, T Uiy, Tun D((M, w), rM; & e) to obtain ¥/
Else
$0 «— Uy, run D((M, w), sg) to obtain b’
Endif
If b = b then output 1, and otherwise 0

Let Rand be the event that the matrix M was chosen randomly from uniform
distribution U}, ,,, and let Real be the event that the matrix was generated by
Genyg. Note that from the assumption that G and R are indistinguishable,
[Pr[b=10"|Real] — Pr[b =10 | Rand]| is negligible.

We first claim that Pr[b = b’ | Real] = Prp[Succ]. To see this, note that when
Real occurs we have M = G. But then G is distributed exactly as this would be
in a real execution, and since D’ outputs 1 iff D succeeds, the claim follows.

Next, we claim that |Pr[b=b'| Rand] — | is negligible. From the construc-
tion of D/,

M <—Uk,n,b<—Z/{1,e (_gn,war (_ukla

_ 1/ _
Prib="b{Rand] =Pri = 1 My @ el — D((M,w), s3)

b:b’]



Thus, from the inequations (4) and (5), and their following modification, we can
obtain that

1
Pr[b=10"| Rand] — 3
is negligible. Combining all these observations together, we have

1 : _
IZr[Succ] -3 < AdviBd(k,tg) +2(n +1) - Advy o Y (ks t, q7)
5 <2-Advgd(k, te) +4(n+ 1) - Advy "™ (k1. 17, qf).

Also it is easy to see that tg, t7, and ¢/ are essentially the same as ¢, t;, and
L L L
q},, respectively. This concludes the proof. a

Remember Equation (1), that is
c=[rim]Gde={rG) ®e} dmG,.

In the above lemma, we proved that {rG; @ e} is pseudorandom for every PPT
algorithm. Thus, even if mGs is not pseudorandom, ¢ looks random for every
PPT algorithms. The proof of the following theorem utilized this fact straight
forwardly. This proof is similar in nature to the proof of Lemma 2, we provide
it in Appendix A.3.

Theorem 1. If there exists a probabilistic algorithm A which runs in time t and
such that Adviy g (k) > 6 then

2 Advg? (k, tg) + 4(n + 1) - Advip "™ (k£ qf) > 6.

Here t}', ¢}’ and ty, are essentially the same as tr,, qr, and t, respectively.

5 Estimation of the Security Parameters

In all the cryptosystems, if the adversary has some partial information on the
plaintext, the time complexity of recovering the entire plaintext is reduced. Par-
ticularly, let us consider the original McEliece cryptosystem. Let m = [m;|m.]
for m; € {0,1}*1 and m, € {0,1}*2 and let m,. be the partial information which
the adversary knows in advance. Since

c=mG®e=mG,Odm, Gy De,
he can compute m,. Gy and
d=mGiEm,GyPe®m, Gy =mG| De.

Thus, the time-complexity of recovering the entire m will be reduced to that of
decrypting ¢. One of the fastest attacks which computes m; from ¢ is “finding-
low-weight-codeword” attack [5, 6], and its time-complexity is estimated as [14]

(kli 1) ' (Z;rui)_l‘ Q



In this paper, we consider the semantically secure variant of the McEliece
cryptosystem. In our scenario, the adversary knows that ciphertext is the en-
cryption of either mg or my. Thus, we need to consider that the adversary knows
the partial information of the given ciphertext and this situation is very similar
to the above attack. That is, if the adversary can recover r, then he can dis-
tinguish the encryptions of my and m;. We present the estimated lower-bound
of the size of the public-key in terms of this attack in Table 5. This time com-
plexity is estimated according to (7). The details on this attack with exact time
complexity estimations can be found in [6].

Time complexity

(n, k,w) =|(2048, 1289, 69)|(4096, 2560, 128)
) QI0T7 oT86.T
ky — 2 51016 5I86.0
= 51013 SI85.7
— 5I0T7 51852
ks — 16 5997 oI82 2
Ky — 32 5976 51822
fey — 64 5934 DICE:
ky — 128|257 5I708
ks — 256 2707 51565
ks — 512 |20 53105
iy — 1024 [27%1 58863

Table 1. Time Complexity for the “low weight codeword” Attack

6 Concluding Remarks

We formally show that random padding of the plaintext makes the McEliece
cryptosystem IND-CPA secure. To prove the security of the Niederreiter cryp-
tosystem with the similar padding, we can utilize the result of [10] instead of
Lemma 1 in [13]. It is worth noting that both of these works do not allow tight
reductions. Improving the results of [13] and [10] is an open problem.

Another interesting open question, in the light of [23], is whether the security
of the randomized versions of the McEliece and the Niederreiter cryptosystems
is equivalent or not.

Finally, one might want to extend our result in order to achieve IND-CCA2
secure version of the McEliece cryptosystem without employing random oracles.
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Appendix A

A.1 McEliece Public-Key Cryptosystem

The McEliece cryptosystem [16] consists of a triplet of probabilistic algorithms
= (Genyg, Encyg, Decyg) and M = {0, 1}F.

— Key generation algorithm: The PPT key generation algorithm Genyg works
as follows:

1. Generate a k x n generator matrix G’ of a binary Goppa code, where we
assume that there is an efficient error-correction algorithm Correct which
can always correct up to w errors.

2. Generate a k x k random non-singular matrix S.

3. Generate a n X n random permutation matrix P.

4. Set G = SG’'P, and outputs pk = (G, w) and sk = (S, G, P).

— The encryption algorlthm The PPT encryption algorithm Encyg takes a
plaintext m € {0, 1}k and the public-key pk as input and outputs ciphertext
¢ =mG @ e, where e € {0,1}" is a random vector of weight w.

— The decryption algorithm: The polynomial-time algorithm Decyig works as
follows:

1. Compute cP~1(= (mS)G’ @ eP~!), where P~! denotes the inverse ma-
trix of P.

2. Compute mS = Correct(cP~1).

3. Output m = (mS)S~1.

A.2 Security of the McEliece Cryptosystem

Generally, we can categorize the attacks to the McEliece cryptosystem into the
following two cases:

Structural Attack: Recover the original structure of the secret key from the
generator matrix G.
Direct Decoding: Decode the plaintext m directly from mG & e.

If we employ Goppa codes on 5 from codes on Fom then an efficient algorithm
which can extract the secret-key from the public-key in the McEliece cryptosys-
tem has not been founded. Moreover, there is no algorithm which can efficiently
distinguish the matrix defined by the public-key of the McEliece cryptosystem
and the same size random matrix. The time complexity of the currently best al-
gorithm [7] is still super-polynomial. Intuitively this algorithm works as follows:
enumerate Goppa polynomials and verify whether each corresponding code and
the generator matrix G are “permutation equivalent” or not by using the support
splitting algorithm [21], which results in a n®(1+o0(1))-time algorithm. Actually,
in the worst-case, the problem of deciding permutation equivalence can reduce
to the graph isomorphism problem [19]. From this observation, we utilize the
conjecture that these two matrices are indistinguishable for any PPT algorithm.
We define this formally in Section 3.1.



A.3 Proof of Theorem 1

We construct a distinguisher D from the adversary A. We show that if A breaks
the semantic security of the padded McEliece with non-negligible probability
then D distinguishes s; = G @ e and s as defined in Lemma 2 with non-
negligible probability.

We construct an algorithm D as follows:

D(pk, 5)

Run A, (pk) to obtain (mg,m1)

b — L{1

Define ¢ = § ® mpGo

Run As(c) to obtain o’

Output 1 if ¥’ = b, and 0 otherwise

Let Rand be the event that §(= sg) was chosen from the random distribution,
and let Real be the event that 5(= s1) is 7G| @ e. We will say that A succeeds
if ¥ = b (and denote this event by Succ) under the event Real occurs, and we
denote this probability as Pr4 [Succ]. Note that, we know from Lemma 2 that

|Pr[D = 1| Real] — Pr[D = 1| Rand]|

is negligible.

We claim that Pr[D =1 | Real] = Pr[Succ]. To see this, note that when
Real occurs we have s = s; = rGy & e. But then s; is distributed exactly as
they would be in a real execution. Since D outputs 1 iff A succeeds, the claim
follows.

To complete the proof, we show Pr[D =1 | Rand] = 1. Here we know that
5 is uniformly distributed in U,,. Therefore, § @ my G2 given to A is uniformly
distributed in U,, as well. This means that A obtains no information related to
b. Since D outputs 1 iff A succeeds, we can conclude that Pr[B =1 | Rand] = 3.

By combining these results, we obtain

PrSucc] —1/2 < 2- Adv g (k,te) +4(n+ 1) - AdvPE "™ (K, t7 qf)

§ <2 AdvE (k1) + 4(n + 1) - Advy '™ (kv 17 qF)).

The remaining part is estimating the amount of ¢}, ¢}, and t;; but it is easy to
see that these are essentially the same as t7, ¢7, and t¢, respectively. Combining
all of them together, these are essentially the same as ¢y, q;, and ¢, respectively.

This concludes the proof.



