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Abstract. In this paper, we formally prove that padding the plaintext
with a random bit-string provides the semantic security against chosen
plaintext attack (IND-CPA) for the McEliece (and its dual, the Nieder-
reiter) cryptosystems under the standard assumptions.
Such padding has recently been used by Suzuki, Imai and Kobara in the
context of RFID security. Our proof relies on the technical result by Katz
and Shin from Eurocrypt ’05 showing “pseudorandomness” implied by
learning parity checks with noise (LPN) problem.
We do not need the random oracles as opposed to the known generic
conversions, while they provide stronger protection as compared to our
scheme – against (adaptive) chosen ciphertext attack, i.e., IND-CCA(2).
In order to show that the padded version of the cryptosystem remains
practical, we provide the estimates for suitable key size together with
corresponding work required for successful attack.

1 Introduction

The semantic security (a.k.a. indistinguishability) defined by Goldwasser and
Micali [14] is the security notion for a public-key cryptosystem (PKC) whose
intuitive meaning is that a ciphertext does not leak any useful information about
the plaintext but its length. For example, even if an attacker knows that the
plaintext is either “0” or “1”, the ciphertext does not help him almost at all. Since
this notion appeared, a number of semantically secure public-key encryption
schemes have been proposed [9, 1, 8, 24].

At the same time, the problem of enhancing the existing (not semantically
secure) cryptosystems with such useful property also arose. Two examples of such
schemes are the McEliece [22] and the Niederreiter [23] cryptosystems whose
security is ensured under the following two assumptions: a) hardness of the
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bounded distance decoding of random binary linear codes† or, equivalently, the
learning parity with noise (LPN) and b) indistinguishability of the scrambled
generating and parity-check matrices of a Goppa code from random ones.‡ From
the security point of view, these cryptosystems has a one-wayness property.
Informally, this means that given a randomly chosen ciphertext, it is hard to
completely recover the corresponding plaintext.

Motivation: The main motivation to continue research on the McEliece-style
cryptosystems is the following: a) As it was pointed out in the original paper [22],
the hardware implementation of the McEliece PKC would be very fast as it only
requires matrix operations for encryption/decryption (as long as one can afford
storing keys of hundreds of kilobytes in size); b) Not only a public-key encryption
but also the other primitives (e.g., signatures [7], identity-based identification
and signature schemes [6]) can be built based on the McEliece-style assumptions;
c) this PKC is secure against quantum adversaries that makes it a good candidate
for the post-quantum world.

Our contribution: Our main observation is that if some fixed part of the
plaintext is made random then due to the construction of the cryptosystem it
makes the ciphertext pseudorandom from the attacker’s point of view. As easy as
it looks, this fact, to the best of the authors’ knowledge, has not been proved or
even stated explicitly in the related literature. The paper fills this gap by provid-
ing the formal proof of this fact, establishing connections to the adjacent areas
of cryptography and discussing the future research directions which this result
invokes. Additionally, we estimate the time-complexity of breaking this version
of the McEliece PKC (which we call the randomized McEliece cryptosystem) and
show the suitable size of a public-key for the practical use in this paper.

A bit more formally, let Epk(·) be an encryption algorithm of the McEliece
(or the Niederreiter) cryptosystem whose message space is {0, 1}k, m ∈ {0, 1}k2

a message, and r ∈ {0, 1}k1 a random sequence, where k = k1 + k2. Then,
the ciphertext corresponding to m becomes Epk([r|m]), where [A|B] denotes a
concatenation of two vectors (or, in general, matrices) A and B.

In other words, we show that this padding yields an encryption secure un-
der chosen plaintext attack (IND-CPA), if the McEliece (or the Niederreiter)
cryptosystem is used, under the standard assumptions.

Some details: We note that the aforementioned scheme perhaps appear im-
plicitly or explicitly in many previous works. This paper was inspired by the
work of Suzuki, Kobara and Imai [30] where it was suggested (without a formal
proof) for increasing the security of encryption.

† So far, there exists no polynomial algorithm for this problem. Some evidence for
its hardness is provided by the fact that the general decoding problem is NP-
complete [3].

‡ This has been believed to be true for a long time and was also utilized for crypto-
graphic applications, e.g., [7, 6].



The technical tool which we use to prove the security of our scheme is the
technical lemma by Katz and Shin [15] which established a pseudorandomness
of the queries to the oracle in the LPN problem. The key difference from their
setting is that we have a scrambled generating (or parity-check) matrix of the
Goppa code (which is assumed to be pseudorandom – instead of the oracle
which is equivalent to a random matrix). The main technical result of our work,
Lemma 4, states that substituting a random matrix by a pseudorandom one pre-
serves the pseudorandomness of the output. Then, under the above assumptions
the proof of Proposition 1 stating semantic security of the McEliece cryptosystem
with randomized plaintext follows as well as the similar result for the Niederreiter
cryptosystem.

Related works: Regarding the conversions from one-way cryptosystems to
semantically secure ones, one must first mention the straightforward application
of Goldreich-Levin (hardcore) predicate theorem [13] or Yao’s XOR lemma which
would immediately imply the needed result. The obvious problem is that such
conversion is quite inefficient.

The list of more elaborated conversions includes (but is not limited to) [2,
11, 26, 18]. The optimal asymmetric encryption padding (OAEP) by Bellare and
Rogaway [2] is the first result of such kind but it dealt with one-way trapdoor
permutations (while the cryptosystems we consider are only the trapdoor func-
tions) and needed some fixing in the general case [28].

Fujisaki and Okamoto [11] and Pointcheval [26] independently suggested a
conversion from any one-way PKC to a PKC semantically secure against cho-
sen ciphertext attack (IND-CCA2). Finally, Kobara and Imai [18] presented
a more efficient conversion than the above two, tailored specifically for the
McEliece cryptosystem and arming the latter with the semantic security against
adaptively-chosen ciphertext attack (IND-CCA2). We emphasize that all the
proofs of security for all the above mentioned conversions were in the random
oracle model, while our result does not need this assumption.

Organization of the rest of the paper: In Section 2, we provide some
basic notation and definitions, and describe the original versions of the PKC’s
in question. In Section 3, their randomized versions are introduced along with
related security definitions and the main result is stated, while its proof is pre-
sented in Section 4. In Section 5, the security parameters for the randomized
McEliece cryptosystem are estimated. In Section 6, we conclude our work and
discuss open questions.

2 Preliminaries

In this paper, we consider a w-error correcting (n, k)-linear binary code and,
throughout this paper, we regard k, n, and w as security parameters. Especially,
the code we concentrate on is the binary Goppa code and the relationships
between these parameters are n = 2m and k ≥ n−mw for every positive integer
m. We denote the probabilistic polynomial-time as ppt and we often call the



algorithm efficient if its running time is polynomial. Let s
$← S denote the

operation of selecting s uniformly at random from the set S. If D is a probability
distribution over S then s ← D denotes the operation of selecting s at random
according to D. Let Un denote the uniform distribution over {0, 1}n. Let Ur,c be
the uniform distribution over r × c random binary matrices and let En,w be the
uniform distribution over {0, 1}n of Hamming weight w.

A public-key encryption scheme is composed of a triplet of algorithms Π =
(GenΠ ,EncΠ , DecΠ). The key generation algorithm GenΠ is a ppt algorithm
which on input 1k (k ∈ N) outputs a pair of public and secret keys, (pk, sk),
in polynomial time. We assume that the public-key pk defines a message space
denoted by M . The encryption algorithm EncΠ is a ppt algorithm which, on in-
put pk and a plaintext m ∈M , outputs a ciphertext c ∈ {0, 1}∗. The decryption
algorithm DecΠ is a polynomial-time algorithm which takes sk and c as input
and outputs a message m. We require that for any key pair (pk, sk) obtained
from GenΠ , and any plaintext m ∈M , DecΠ(sk, EncΠ(pk,m)) = m.

The semantic security against chosen-plaintext attack (IND-CPA) is one of
the most natural practical requirements for a public-key cryptosystem. Its intu-
itive meaning is that a ciphertext does not leak any useful information about
the plaintext but its length.

Let Π = (GenΠ , EncΠ , DecΠ) be a public-key encryption scheme and let
D = (D1, D2) be a ppt algorithm. For every k ∈ N, we define

Advsem
D,Π(k) = Pr




(pk, sk)← GenΠ(1k),
(m0,m1)← D1(pk), D2(y) = b

b
$← {0, 1},

y ← EncΠ(pk,mb)


−

1
2
.

Also we define the advantage function of the scheme as follows. For any t,

Advsem
Π (k, t) = maxD

{
Advsem

D,Π(k)
}

,

where the maximum is over all A with time-complexity t. We say that Π is
semantically secure if the function Advsem

Π (k, t) is negligible for every polynomial
bounded t and every sufficiently large k.

Let us now describe the original cryptosystems to be considered in this work.

2.1 McEliece Public-Key Cryptosystem

The McEliece cryptosystem [22] consists of a triplet of probabilistic algorithms
ME = (GenME,EncME, DecME) and M = {0, 1}k.

– Key generation algorithm: The ppt key generation algorithm GenME works
as follows:
1. Generate a k×n generator matrix G′ of a binary Goppa code, where we

assume that there is an efficient error-correction algorithm Correct which
can always correct up to w errors.



2. Generate a k × k random non-singular matrix S.
3. Generate a n× n random permutation matrix P.
4. Set G = SG′P, and output pk = (G, w) and sk = (S,G′,P).

– The encryption algorithm: The ppt encryption algorithm EncME takes a
plaintext m ∈ {0, 1}k and the public-key pk as input and outputs ciphertext
c = mG⊕ e, where e← En,w.

– The decryption algorithm: Given ciphertext c and secret-key sk, the polynomial-
time decryption algorithm DecME works as follows:
1. Compute cP−1 = (mS)G′⊕eP−1, where P−1 denotes the inverse matrix

of P.
2. Compute mS = Correct(cP−1).
3. Output m = (mS)S−1.

2.2 The Niederreiter Public-Key Cryptosystem

Niederreiter [23] proposed a dual version of the McEliece cryptosystem where
the public-key is a scrambled parity-check matrix H, a plaintext is m ∈ {0, 1}n
of weight w, and the corresponding ciphertext c is of the form c = mH.

The Niederreiter cryptosystem consists of three ppt algorithms NR =(GenNR,
EncNR, DecNR) and M =⊂ {0, 1}n is a set of strings of weight w.

– Key generation algorithm: The ppt key generation algorithm GenNR works
as follows:
1. Generate a (n− k)× n parity check matrix H′′ of a binary Goppa code,

where we assume that there is an efficient error correcting algorithm
Correct which can correct up to w errors.

2. Generate (n− k)× (n− k) random non-singular matrix S.
3. Generate n× n random permutation matrix P.
4. Let H′ = SH′′P, let H = H′T and output pk = (H, w) and sk =

(S,H′′,P).
– The encryption algorithm: The polynomial-time encryption algorithm EncNR

takes a plaintext m ∈ {0, 1}n of weight w and pk as input and outputs
ciphertext c = mH.

– The decryption algorithm: Given ciphertext c and secret-key sk, the polynomial-
time decryption algorithm DecNR works as follows:
1. Compute S−1cT = H′′(PmT ), where S−1 denotes the inverse matrix of

S
2. Compute PmT = Correct(S−1cT ).
3. Output mT = P−1(PmT ).

3 Randomized Versions and Main Result

3.1 Randomized McEliece Cryptosystem

It is easy to see that the original McEliece cryptosystem [22] is not IND-CPA.
Suppose that the adversary obtains a ciphertext c, and he knows that c is a



ciphertext of either m0 or m1, then he can verify which one is a corresponding
plaintext by simply computing the weight of m0G ⊕ c and check it to be w or
not. An intuitive way to avoid such the situation is concatenating a random
sequence r to a message m and encrypting [r|m]. Such padding has been often
employed in the previous schemes, but so far there has been no formal proof for
semantic security which it provides.

Let k1, k2 ∈ N be two integers such that k = k1+k2 and k1 = bk, where b < 1
is a positive rational number, e.g., b = 9

10 . Here, we denote by k1 the length of the
random string r and by k2 the length of the message m. The encryption algorithm
EncRME just encrypts [r|m] instead of m itself. The decryption algorithm DecRME

is almost the same as DecME. The difference is that it outputs only the last k2

bits of the decrypted string.

3.2 Randomized Niederreiter Cryptosystem

Similar situation occurs in the Niederreiter cryptosystem as well. In [30], the
authors proposed the RFID authentication scheme based on the Niederreiter
cryptosystem. Their idea was essentially to use the random padding for enhanc-
ing security of the Niederreiter cryptosystem. However, no claim of semantic
security for this scheme have been made.

Let n1, and n2 be some integers with n = n1 + n2 and n1 = bn for some
positive rational number b, e.g., b = 9

10 . Here we assume that r ∈ {0, 1}n1 is
the random sting of weight w1 = d n1w

n1+n2
e and m ∈ {0, 1}n2 is the message of

weight w2 = b n2w
n1+n2

c. The encryption algorithm EncRNR encrypts [r|m] where r
is randomly chosen. Also the decryption algorithm DecRNR is the same as DecNR

except that it outputs only the last n2 bits of the decrypted plaintext.

3.3 Security of the Original Cryptosystems

In order to prove the security of these schemes, we use the same assumptions as
for the original PKC.

Generally, we can categorize the attacks to the McEliece and the Niederreiter
cryptosystems into the following two cases:

Structural Attack: Recover the original structure of the secret key from the
scrambled generator matrix G or the scrambled parity check matrix H.

Direct Decoding: Decode the plaintext m directly from mG⊕ e or mH.

If we employ Goppa codes on F2 from codes on F2m then there is no efficient
algorithm which can extract the secret-key from the public key in the McEliece or
the Niederreiter cryptosystems as long the weak keys [20] are avoided. Moreover,
there is no algorithm which can efficiently distinguish the matrices defined by the
public-keys of the those cryptosystems and the same size random matrices. The
time complexity of the currently best algorithm [7] is still super-polynomial. Intu-
itively this algorithm works as follows: enumerate Goppa polynomials and verify
whether each corresponding code and the generator matrix G (or the generator



matrix converted from parity check matrix H) are “permutation equivalent” or
not by using the support splitting algorithm [27], which results in a nw(1+o(1))-
time algorithm. Actually, in the worst-case, the problem of deciding permutation
equivalence can reduce to the graph isomorphism problem [25]. To prove secu-
rity of the randomized cryptosystems, we assume that the matrices G and H
are indistinguishable from the same size random matrices, respectively, for any
ppt algorithm. The formal statements are given in Subsections 3.4 and 3.5.

For the excellent review of the security of both PKC’s, we refer the reader
to [17].

3.4 Security of the Randomized McEliece Cryptosystem

Definition 1 (Indistinguishability of G). Let D be a probabilistic algorithm.
For every k ∈ N, we define

Advind
D,G(k) = Pr

[
((G, w), sk)← GenME(1k) | D(G, w) = 1

]

− Pr [R← Uk,n | D(R, w) = 1] .

Also we define the advantage function of the problem as follows. For any t,

Advind
G (k, t) = maxD

{
Advind

D,G(k)
}

,

where the maximum is over all D with time-complexity t. We say G is indis-
tinguishable if, for every polynomial bounded t and every sufficiently large k,
Advind

G (k, t) is negligible.

In this paper, we assume that G is indistinguishable. This assumption was
also utilized in [7, 6].

To prove the security, we also need to assume the learning parity with noise
(LPN) problem is hard.

Definition 2 (LPN problem). Let r, a be binary vectors of length k and let
z = 〈r, a〉, where 〈r, a〉 is the dot product of r and a modulo 2. Also we con-
sider Bernoulli distribution Bθ with parameter θ ∈ (0, 1

2 ), and let Qr,θ be the
distribution defined by

{
a← {0, 1}k, ν ← Bθ | (a, 〈r, a〉 ⊕ ν)

}
.

Let A be a probabilistic algorithm. For every k ∈ N, we define

Advoneway
A,LPNθ

(k) = Pr
[
r ← {0, 1}k | AQr,θ = r

]
.

We define the advantage function of the problem as follows. For any t and q,

Advoneway
LPNθ

(k, t, q) = maxA

{
Advoneway

A,LPNθ
(k)

}
,

where the maximum is over all A with time-complexity t and query-complexity
q. We say that the LPNθ problem is hard if Advoneway

LPNθ
(k, t, q) is negligible for

every sufficiently large k and polynomially bounded t, and q.



We assume that the LPNθ problem is hard for some θ satisfying w = bθ(n +
1)c. In fact, all known algorithms for solving this problem are still super-polynomial
time [4]. Especially, for fixed q and small amount of noise, the best ones are the
information set decoding attacks due to Leon [19], Stern [29], Canteaut and
Chabaud [5], and its time complexity is roughly

(
n

k

)
·
(

n− w

k

)−1

, (1)

where w is the weight of the noise.
With the above two assumptions, we can prove that the randomized McEliece

cryptosystem is semantically secure.

Proposition 1. The randomized McEliece cryptosystem is IND-CPA secure if
the LPNθ problem is hard and G is indistinguishable.

The proof is given in Section 4.2

3.5 Security of the Randomized Niederreiter Cryptosystem

Definition 3 (Indistinguishability of H). Let D be a probabilistic algorithm.
For every k ∈ N, we define

Advind
D,H(k) = Pr

[
((H, w), sk)← GenNR(1k) | D(H, w) = 1

]

− Pr [R← Un,n−k | D(R, w) = 1] .

Also we define the advantage function of the problem as follows. For any t,

Advind
H (k, t) = maxD

{
Advind

D,H(k)
}

,

where the maximum is over all D with time-complexity t. We say H is indistin-
guishable if Advind

H (k, t) is negligible for every polynomially bounded t and every
sufficiently large k.

In this paper, we assume that H is indistinguishable.
We can prove that the randomized Niederreiter cryptosystem has semantic

security if the following problem is hard for every ppt algorithm. The problem
is similar to the LPN problem but, to the best of the authors’ knowledge, there
exists no proof that these two problems are equivalent in terms of the average
case time-complexity.

Definition 4 (Syndrome Decoding Problem). Let D be a probabilistic al-
gorithm. For every k ∈ N, we define

Advoneway
D,SDw

(k) = Pr [H← Un,n−k, r ← En,w | D((H, w), rH) = r] .

Also we define the advantage function of the problem as follows. For any t,

Advoneway
SDw

(k, t) = maxD

{
Advoneway

D,SDw
(k)

}
,



where the maximum is over all D with time-complexity t. We say that the syn-
drome decoding problem SDw is hard if Advoneway

SDw
(k, t) is negligible for every

polynomially bounded t and every sufficiently large k.

We assume that the SDw problem is hard. With the above two assumptions we
can prove the following proposition.

Proposition 2. The randomized Niederreiter cryptosystem is IND-CPA secure
if the SDw problem is hard and H is indistinguishable.

The proof is given in Section 4.3

4 Security Analysis

4.1 Intermediate Lemma

Before describing the proofs of randomized versions being semantically secure,
we characterize these cryptosystems.

We denote a set of random numbers utilized inside EncΠ by R, and we
explicitly denote the randomness used inside the algorithm by EncΠ(pk, m; r),
where r ∈ R .

Definition 5. The public-key encryption scheme Π = (GenΠ , EncΠ , DecΠ) with
a message space M and a random space R is called admissible if there is a pair of
deterministic polynomial-time algorithms Enc1

Π and Enc2
Π satisfying the following

properties:

– Dividability: Enc1
Π takes as input a key pk and r ∈ R, and outputs a p(k)

bit-string. Enc2
Π takes as input a key pk, and m ∈ M and outputs a p(k)

bit-string. Here p is some polynomial in k. Then for any pk given by Gen,
r ∈ R, and m ∈M , Enc1

Π(pk, r)⊕ Enc2
Π(pk,m) = EncΠ(pk, m; r).

– Pseudorandomness: Let D be a probabilistic algorithm. We define

Advind
D,Enc1Π

(k) = Pr
[
r

$← R, (pk, sk)← Gen(1k) | D(pk,Enc1
Π(pk, r)) = 1

]

− Pr
[
s←Up(k), (pk, sk)← Gen(1k) | D(pk, s) = 1

]
.

Also we define the advantage function of the problem as follows. For any t,

Advind
Enc1Π

(k, t) = maxD

{
Advind

D,Enc1Π
(k)

}
,

where the maximum is over all D with time-complexity t. Then Advind
Enc1Π

(k, t)
is negligible for every polynomially bounded t and every sufficiently large k.

In the following lemma, we prove that if Π is an admissible cryptosystem, then
it is an IND-CPA encryption scheme.



Lemma 1. If there exists an algorithm D which runs in time t, and such that

Advsem
D,Π(k, t) ≥ δ,

then
Advind

Enc1Π
(k, t + t′) ≥ δ,

where t′ is the worst-case time-complexity of computing Enc1
Π .

Proof. We construct a distinguisher D′ from the IND-CPA adversary D. We
show that if D breaks the semantic security with non-negligible probability then
D′ distinguishes s1 = Enc1

Π(pk, r) and the same length random value s0 with
non-negligible probability.

We construct an algorithm D′ as follows:

D′(pk, s̃)
Run D1(pk) to obtain (m0,m1)
b← U1

Define c = s̃⊕ Enc2
Π(pk,mb)

Run D2(c) to obtain b′

Output 1 if b′ = b, and 0 otherwise

Let Rand be the event that s̃(= s0) was chosen from the random distribution,
and let Real be the event that s̃(= s1) is Enc1

Π(pk, r) for some random string r.
We will say that D succeeds if b′ = b (and denote this event by Succ) under the
event Real occurs, and we denote this probability as PrD [Succ]. Note that, we
know

Pr [D′ = 1 | Real]− Pr [D′ = 1 | Rand] (2)

is upper-bounded by Advind
Enc1Π

(k, t + t′).
We claim that Pr [D′ = 1 | Real] = PrD[Succ]. To see this, note that when

Real occurs we have s̃ = s1 = Enc1
Π(pk, r). But then s1 is distributed exactly as

they would be in a real execution. Since D′ outputs 1 iff D succeeds, the claim
follows.

To complete the proof, we show Pr [D′ = 1 | Rand] = 1
2 . Here we know that

s̃ is uniformly distributed in Up(k). Therefore, s̃ ⊕ Enc2
Π(pk, mb) given to D is

uniformly distributed in Up(k) as well. This means that D obtains no infor-
mation related to b. Since D′ outputs 1 iff D succeeds, we can conclude that
Pr [D′ = 1 | Rand] = 1

2 .
By combining these results, now we can estimate (2) as follows:

Pr [D′ = 1 | Real]− Pr [D′ = 1 | Rand] = Pr
D

[Succ]− 1/2

= Advsem
D,Π(k)

≥ δ.

Since Advind
Enc1Π

(k, t + t′) ≥ Pr [D′ = 1 | Real]− Pr [D′ = 1 | Rand],

Advind
Enc1Π

(k, t + t′) ≥ δ.

This concludes the proof. ut



Therefore, to prove Propositions 1 and 2, it is sufficient to prove that the random-
ized McEliece and the randomized Niederreiter cryptosystems are admissible.

4.2 Proof of Proposition 1

Let us recall the form of the randomized McEliece cryptosystem: c = [r|m]G⊕e.
Let G1 and G2 be k1 × n and k2 × n sub-matrices of G, respectively, such that
GT = [GT

1 |GT
2 ]. Then we can rewrite the above equation as follows:

c = [r|m]G⊕ e = {rG1 ⊕ e} ⊕mG2. (3)

If we define the algorithm Enc1
RME(pk, [r|r′])) by rG1⊕e, where r′ is the random

number utilized for generating the weight w random vector e ∈ {0, 1}n, and
define the algorithm Enc2

RME(pk, m) by mG2, then the randomized McEliece
cryptosystem satisfies dividability. So to prove the IND-CPA security of the
randomized McEliece cryptosystem, it is sufficient to prove that Enc1

RME satisfies
the pseudorandomness property.

The following lemma, which states that the hardness of the LPN problem
implies pseudorandomness of the output, plays an important role to prove the
pseudorandomness of Enc1

RME(pk, r).
In the following lemma, we set the length of a and r as k1.

Lemma 2 (Lemma 1 in [15]). If there exists an algorithm which runs in time
t, makes queries q times and such that

Pr
[
r ← {0, 1}k1 | DQr,θ = 1

]− Pr
[
DUk1+1 = 1

] ≥ δ, then

Advoneway
LPNθ

(k1, t
′, q′) ≥ δ/4, where t′ = O(tk1δ

−2 log k1), q′ = O(qδ−2 log k1).

This is the key technical lemma which was rigorously proved in [15]. The next
corollary easily follows from the above lemma.

Corollary 1. Let O1 = Qr,θ and O0 = Uk1+1. If there exists an algorithm which
runs in time t, makes queries q times and such that

∣∣∣∣Pr
[

r ← Uk1 , b← U1 b = b′

DOb = b′

]
− 1

2

∣∣∣∣ ≥ δ

then
2 · Advoneway

LPNθ
(k1, t

′, q′) ≥ δ,

where t′ = O(tk1δ
−2 log k1), q′ = O(qδ−2 log k1).

Informally, the next lemma states that choosing the errors for the LPN prob-
lem according to En,w (instead of the Bernoulli distribution with parameter Θ)
preserves pseudorandomness of the output if w = bθ(n + 1)c.

Let R1 and R2 be a k1 × n sub-matrix and a k2 × n sub-matrix of a matrix
R, respectively, such that RT = [RT

1 |RT
2 ]. Also let q = n.



Lemma 3. If there exists an algorithm D which runs in time t and such that

Pr
[

r ← Uk1 ,R← Uk,n, e← En,w, D(R, w, sb) = b
b← U1, s0 ← Un, s1 ← rR1 ⊕ e

]
− 1

2
≥ δ

then
2(n + 1) · Advoneway

LPNθ
(k1, t

′, q′) ≥ δ, (4)

respectively, where q′ = O(nδ′−2 log k1), t′ = O((t + n2)k1δ
′−2 log k1) and δ′ =

δ
n+1 .

Sketch of Proof. Let’s denote the distinguisher denoted in Corollary 1 by D′.
Then we can construct the distinguisher which tells O1 from O0 using D as
follows:

– D′ accesses to the oracle n times. Let (ai, bi) be a response from the oracle
at time i. If the oracle is O1 then we denote each error vector by νi and so
bi = 〈ai, r〉 ⊕ νi.

– D′ sets R1 = [a1|a2| . . . |an], where we regard each ai as a column vector and
thus R1 is k1 × n random matrix.

– D′ randomly generates R2 ← Uk2,n.
– D′ feeds D with RT = [RT

1 |RT
2 ], w, and [b1|b2| . . . |bn].

– D′ outputs what D outputs.

Consider the case where the oracle is O1. In this case, each error νi added by
oracle O1 is generated according to Bernoulli distribution, but D′ must feed
D with rG1 ⊕ e, where e = [ν1|ν2| . . . |νn] is a string of weight w. So we must
estimate the probability of the weight of e being w. However, this probability is
at least 1

n+1 since the weight of w being bθ(n + 1)c is the most likely to occur
in Bernoulli distribution among n + 1 possible weights. This introduces (n + 1)
in the left part of (4), still leaving the advantage negligible. ut

To prove the proposition, we need to replace the random matrix R with the
(pseudorandom) public-key matrix G. The next lemma states that exchanging
a truly random matrix with a pseudorandom matrix G preserves the pseudo-
randomness of the output s1 = rG1 ⊕ e. That is, the randomized McEliece
cryptosystem is an admissible cryptosystem.

Lemma 4. If there exists an algorithm D which runs in time t and such that

Pr
[
r ← Uk1 , (G, w)← GenME(1k), e← En,w | D((G, w), rG1 ⊕ e) = 1

]

− Pr
[
s0 ← Un, (G, w)← GenME(1k) | D((G, w), s0) = 1

] ≥ δ,

then
4(n + 1) · Advoneway

LPNθ
(k1, t1, q1) + 2 · Advind

G (k, t2) ≥ δ.

q1 = O(nδ′−2 log k1), t1 = O((t+n2)k1δ
′−2 log k1), t2 = O(t+n2) and δ′ = δ

n+1 .



Proof. We will say that the algorithm D succeeds iff it outputs 1 when given
input was of the form rG1 ⊕ e. We denote this event by Succ. We construct an
adversary D′ which distinguishes the random matrix R from the matrix G as
follows.

D′(M, w)
Divide M into M1 and M2 such that MT = [MT

1 |MT
2 ], M1 is k1×n sub-matrix

and M2 is k2 × n sub-matrix.
b← U1

If b = 1
e← En,w, r ← Uk1 , run D((M, w), rM1 ⊕ e) to obtain b′

Else
s0 ← Un, run D((M, w), s0) to obtain b′

Endif
If b = b′ then output 1, and otherwise 0

Let Rand be the event that the matrix M was chosen randomly from uniform
distribution Uk,n, and let Real be the event that the matrix was generated by
GenME. Note that we want to estimate the amount of

Pr [b = b′ | Real]− Pr [b = b′ | Rand] .

We first claim that Pr [b = b′ | Real] = PrD[Succ]. To see this, note that when
Real occurs we have M = G. But then G is distributed exactly as this would be
in a real execution, and since D′ outputs 1 iff D succeeds, the claim follows.

Next, we estimate the amount of Pr [b = b′ | Rand]. From the construction of
D′, we can rewrite this by

Pr [b = b′ | Rand] = Pr
[

M← Uk,n, b← U1, e← En,w, r ← Uk1 , b = b′

s0 ← Un, s1 ← rM1 ⊕ e, b′ ← D((M, w), sb)

]
.

But this is already evaluated in Lemma 3. So we know that

2(n + 1) · Advoneway
LPNθ

(k1, t1, q1) ≥ Pr [b = b′ | Rand]− 1
2
,

where q1 = O(nδ′−2 log k1), t1 = O((t + n2)k1δ
′−2 log k1) and δ′ = δ

n+1 .
By combining these observations, we obtain

Pr [b = b′ | Real]− Pr [b = b′ | Rand]

≥ Pr
D

[Succ]− 1
2
− 2(n + 1) · Advoneway

LPNθ
(k1, t1, q1)

and

Advind
G (k, t2) ≥ Pr [b = b′ | Real]− Pr [b = b′ | Rand] ,

where t2 = O(t + n2). So

Advind
G (k, t2) + 2(n + 1) · Advoneway

LPNθ
(k1, t1, q1) ≥ Pr

D
[Succ]− 1

2



and thus
2 · Advind

G (k, t2) + 4(n + 1) · Advoneway
LPNθ

(k1, t1, q1) ≥ δ.

This concludes the proof. ut
Remember the form of the randomized McEliece cryptosystem, that is

c = [r|m]G⊕ e = {rG1 ⊕ e} ⊕mG2.

In the above lemma, we proved that Enc1
RME(pk, r) = rG1 ⊕ e is pseudorandom

for every ppt algorithm. Thus, the randomized McEliece cryptosystem is the
admissible cryptosystem. By Lemma 1 and Lemma 4, we can conclude with the
following: If there exists an IND-CPA adversary D which runs in time t, then

2 · Advind
G (k, t2) + 4(n + 1) · Advoneway

LPNθ
(k1, t1, q1) ≥ Advsem

D,RME(k, t),

where q1 = O(nδ′−2 log k1), t1 = O((t + n2)k1δ
′−2 log k1), t2 = O(t + n2) and

δ′ = δ
n+1 . Therefore, if G is indistinguishable and the LPN problem is hard then

the randomized McEliece cryptosystem is IND-CPA secure.

4.3 Proof of Proposition 2

In the above proof, Lemma 2 played an important role. There is a similar result in
[10] which is useful for proving the semantic security of the randomized Niederre-
iter cryptosystem. The result stated in [10] is that, for a randomly chosen vector
r ∈ {0, 1}n1 of weight w1 and n1× (n−k) binary random matrix R, rR is pseu-
dorandom. So we can prove its semantic security with the similar strategy. That
is, recall the form of the randomized Niederreiter cryptosystem: c = [r|m]H,
where r is the random vector of weight w1. Let H1 and H2 be n1 × (n− k) and
n2 × (n− k) sub-matrices of H, respectively, such that HT = [HT

1 |HT
2 ]. Similar

to the randomized McEliece cryptosystem, we can rewrite the above equation
as follows:

c = [r|m]H = {rH1} ⊕mH2.

The randomized Niederreiter cryptosystem has dividable property in nature, and
thus the rest of the proof is to prove its pseudorandomness of Enc1

RNR(pk, r′) =
rH1, where r′ is the random string for generating a random string r ∈ {0, 1}n1

of weight w1. To prove pseudorandom property we utilize the result of [10]§.

Theorem 1 ([10, 12]). If there exists an algorithm which runs in time t, and
such that

Pr [r ← En1,w1 ,R1 ← Un1,n−k | D((R1, w1), rR1) = 1]
− Pr [s← Un−k,R1 ← Un1,n−k | D((R1, w1), s) = 1] ≥ δ,

then Advoneway
SDw1

(n1, t
′) ≥ δ3

64n1
, where t′ = O(n2(t + n2)/δ2).

§ It utilized the Goldreich-Levin (hardcore) predicate theorem[13, 12] to prove the
pseudorandomness but the authors did not estimate the reduction cost. To estimate
the reduction cost, we simply combine Proposition 2.5.3 in [12] and Theorem 1 in
[10].



Let R1 be the n1 × (n− k) binary matrix, let R2 be the n2 × (n− k) binary
matrix, and let RT = [RT

1 |RT
2 ]. The following corollary can be easily deduced

from the above theorem.

Corollary 2. If there exists an algorithm which runs in time t, and such that

Pr [r ← En1,w1 ,R← Un,n−k | D((R, w1), rR1) = 1]
− Pr [s← Un−k,R← Un,n−k | D((R, w1), s) = 1] ≥ δ,

then Advoneway
SDw1

(n1, t
′) ≥ δ3

64n1
, where t′ = O(n2(t + n2)/δ2).

We follow the same strategy as with Proposition 1: We replace the random
matrix R with the (pseudorandom) public-key matrix H and show Enc1

RNR(pk, r′) =
rH1 is pseudorandom, where r′ is used to produce a random string r ∈ {0, 1}n1 of
weight w1. The proof of the following lemma is very similar to that of Lemma 4,
so we only provide its sketch.

Lemma 5. If there exists an algorithm D which runs in time t and such that

Pr
[
r ← En1,w1 , (H, w)← GenNR(1k) | D((H, w), rH1) = 1

]

− Pr
[
s← Un−k, (H, w)← GenNR(1k) | D((H, w), s) = 1

] ≥ δ,

then
8 · 3

√
n1 · Advoneway

SDw1
(n1, t′) + 2 · Advind

H (k, O(t + n2)) ≥ δ,

where t′ = O(n2(t + 2n2)/δ2).

Sketch of Proof. We will say that the algorithm D succeeds iff it outputs 1 when
given input was of the form rH1. We denote this event by Succ. We construct
an adversary D′ which distinguishes the random matrix R from the matrix H
as follows.

D′(M, w)
Divide M into M1 and M2 such that MT = [MT

1 |MT
2 ], M1 is a n1 × (n − k)

sub-matrix and M2 is a n2 × (n− k) sub-matrix.
b← U1

If b = 1
r ← En1,w1 , set s1 = rM1 and run D((M, w), s1) to obtain b′

Else
s0 ← Un−k, and run D((M, w), s0) to obtain b′

Endif
If b = b′ then output 1, and otherwise 0

Let Rand be the event that the matrix M was chosen randomly from uniform
distribution Un,n−k, and let Real be the event that the matrix was generated by
GenRNR. Note that, from the assumption that H and R are indistinguishable,
we know

Pr [b = b′ | Real]− Pr [b = b′ | Rand]



is upper-bounded by Advind
H (k, O(t + n2)).

We are going to estimate the amount of Pr [b = b′ | Real] and Pr [b = b′ | Rand].
However, by the same reason with Lemma 4, Pr [b = b′ | Real] = PrD[Succ] and

3

√
64n1 · Advoneway

SDw1
(n1, t′) ≥ Pr [b = b′ | Rand]− 1

2
,

where t′ = O(n2(t + 2n2)/δ2). Combining all these observations together, we
have

Pr
D

[Succ]− 1
2
≤ 3

√
64n1 · Advoneway

SDw1
(n1, t′) + Advind

H (k,O(t + n2))

δ ≤ 8 · 3

√
n1 · Advoneway

SDw1
(n1, t′) + 2 · Advind

H (k, O(t + n2)).

ut

The above lemma states that Enc1
RNR(pk, r′) = rH1, where r′ is a random

value for generating r, is pseudorandom and thus we can say that the random-
ized Niederreiter cryptosystem is the admissible cryptosystem. By combining
Lemma 1 and Lemma 5 we can say

8 · 3

√
n1 · Advoneway

SDw1
(n1, t′) + 2 · Advind

H (k, O(t + n2)) ≥ Advsem
RNR(k, t),

where t′ = O(n2(t+n2)/δ2). Thus we can conclude that the randomized Nieder-
reiter cryptosystem is IND-CPA cryptosystem if H is indistinguishable and syn-
drome decoding problem is hard.

5 Estimation of the Security Parameters

In all the cryptosystems, if the adversary has some partial information on the
plaintext, the time complexity of recovering the entire plaintext is reduced. Par-
ticularly, let us consider the original McEliece cryptosystem. Let m = [ml|mr]
for ml ∈ {0, 1}k1 and mr ∈ {0, 1}k2 and let mr be the partial information which
the adversary knows in advance. Since

c = mG⊕ e = mlG1 ⊕mrG2 ⊕ e,

he can compute mrG2 and

c′ = mlG1 ⊕mrG2 ⊕ e⊕mrG2 = mlG1 ⊕ e.

Thus, the time-complexity of recovering the entire m will be reduced to that of
decrypting only c′, hereby changing from 1 to the following:

(
n

k1 + 1

)
·
(

n− w

k1 + 1

)−1

. (5)



In this paper, we consider the semantically secure variant of the McEliece
cryptosystem. In our scenario, the adversary knows that ciphertext is the en-
cryption of either m0 or m1. Thus, we need to consider that the adversary knows
the partial information of the given ciphertext and this situation is very similar
to the above attack. That is, if the adversary can recover r, then he can distin-
guish the encryptions of m0 and m1. We present the estimated lower-bound of
the size of the public-key in terms of this attack in Table 5. This time complexity
is estimated according to (5).

Time complexity

(n, k, w) ⇒ (2048, 1289, 69) (4096, 2560, 128)

k2 = 1 2101.7 2186.1

k2 = 2 2101.6 2186.0

k2 = 4 2101.3 2185.7

k2 = 8 2101.7 2185.2

k2 = 16 299.7 2184.2

k2 = 32 297.6 2182.2

k2 = 64 293.4 2178.4

k2 = 128 285.7 2170.8

k2 = 256 271.72 2156.6

k2 = 512 248.6 2131.05

k2 = 1024 214.1 288.63

Table 1. Time Complexity for the “low weight codeword” Attack

6 Concluding Remarks

We formally show that random padding of the plaintext makes the McEliece
and Niederreiter cryptosystems IND-CPA secure. It is worth noting that both
these results do not allow tight reductions. Improving them, or, in other words,
providing tightness for [15] and [10] is an open problem.

Another interesting open question, in the light of [16], is whether the security
of the randomized versions of the McEliece and the Niederreiter cryptosystems
is equivalent or not.

Finally, one might want to extend our result in order to achieve IND-CCA2
secure version of the McEliece as well as the Niederreiter cryptosystems without
employing random oracles.
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