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Abstract. The main cryptographic primitives (Bit Commitment (BC) and
Oblivious Transfer (OT) protocols) based on noisy channels have been
considered in [1] for asymptotic case. Non-asymptotic behavior of BC protocol
has been demonstrated in [2]. The current paper provides stricter asymptotic
conditions on Binary Symmetric Channel (BSC) to be feasible OT protocol
proposed in [1]. We also generalize this protocol using different encoding and
decoding methods that require to regain formulas for Renyi entropy. Non-
asymptotic case (finite length of blocks transmitted between parties) is also
presented. Some examples are given to demonstrate that these protocols are in
fact reliable and information-theoretically secure. We also discuss the problem
– how to extend ( 1

2 )-OT protocol to ( 1
L )-OT protocol and how to arrange BSC

connecting parties. Both BC and OT protocols can be used as components of
more complex and more important for practice protocols like “Digital cash”,
“Secure election” or “Distance bounding”.

1   Introduction

The simplest of cryptographic protocols that are sufficient to accomplish many
complex protocols can be called cryptographic primitives. One of such primitives is
so called Oblivious Transfer ((

1
2 )-OT). According to this primitive, one party Alice

has two secret strings 0b  and 1b , and another party Bob wants to learn cb , 1,0=c

for a secret bit c of his choice. Alice is willing to collaborate provided that Bob does
not learn any information about cb  and Bob will only participate if Alice cannot

obtain information about c. (We note that (
1
2 )-OT protocol is a particular case of
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(
1
L )-OT protocol, where Alice has L secret strings and Bob wants to learn only one of

them but in a manner to be completely unknown for Alice which of L secrets Bob
receives.)

The algorithms to perform (
1
2 )-OT protocol (OT for brevity) have been considered

in [3]. To be secure they require limitation on parties’ computing power, so they are
computational secure. This paper (following the idea of [1]) considers a scenario
where both Alice and Bob have no limitation on their computing power. It would be
impossible to accomplish this protocol without another assumption. Such an extra
assumption we make is that Alice and Bob are connected by Binary Symmetric
Channel (BSC ϕ ) with bit error probability ϕ .

In [1] the following OT information-theoretically secure protocol based on BSC ϕ

connecting parties was proposed. Alice and Bob agree on a binary linear code C that
has constructive algorithm to correct maximum possible number of errors. It is also
assumed that there exist noiseless channels to exchange messages between Alice and
Bob. After this initialization phase Alice and Bob have to perform the following base
protocol:
1. Alice picks randomly 2n bits ix , ni 2,,2,1 K= , repeats twice each of them and

sends 4n-bit string to Bob over BSC ϕ .
2. Bob accepts each received pair if and only if it is either 00 or 11, otherwise he

rejects it. The accepted pairs are transformed in 2n-bit string ix′ , ni 2,,2,1 K= ,
following the trivial decision rule: 00 →  0, 11 →  1.

3. Bob selects the desired bit string cb , where c = 0 or 1 and picks two disjoint
subsets 0I , 1I  of the set (1, 2, …, 2n), satisfying the conditions: nII == 10 ,

cI  contains only the numbers of positions corresponding to accepted bits in the
step 2 of protocol.

4. Bob sends 0I  and 1I  to Alice over noiseless channel.
5. Alice computes the check strings (or syndromes) 0s , 1s  to original n-bit substrings

0I
x , 

1I
x  using the known check matrix of the code C. Then Alice sends these

check strings to Bob over noiseless channel.
6. Alice picks random n-bit string m, computes )(ˆ

000 Im xhbb ⊕= , )(ˆ
111 Im xhbb ⊕= ,

where “⊕ ” is bitwise mod 2 addition, )(Kmh  is a hash function taken from

universal2 class [4] given known  m and sends to Bob m, 0b̂  and 1b̂  over noiseless
channel.

7. Bob corrects errors on 
cI
x′  using cs , recovers 

cI
x  and computes the desired secret

)(ˆ
cImcc xhbb ⊕= .

If Alice is honest (that means that she follows to this protocol) and the channel
connecting parties is in fact BSC ϕ  without memory, then Alice has no chances to
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distinguish which of two subsets 0I  or 1I  corresponds to c. It is more complex to
prove that Bob does not learn any information about cb  and on the other hand that
Bob following honestly to the protocol given above is able to learn cb  with high
probability. Solution to these problems will be considered in the next Sections.

The paper is organized as follows. In Section 2 the condition on the bit error
probability ϕ  to provide both reliability and security of OT protocol is presented. We
also give there an optimization of this parameter to provide more efficient protocol.
Section 3 contains several generalizations of the base protocol and a description of
their asymptotic behavior. In Section 4 we give the main non-asymptotic formulas to
estimate reliability and security of the base protocol and consider also the problem
how to optimize its parameters. In Section 5 we summarize the main results and
consider possible transformations of (

1
2 )-OT protocols to (

1
L )-OT protocol  and

discuss an arrangement of BSC ϕ  between parties.

2   Feasibility of base OT protocol in asymptotic case

First of all we note that if Alice and Bob run the base protocol described above the
following probabilities are true:

P(accept) =  22 )1( ϕϕε −+=  = (the probability to accept any bit by Bob)

P( xx ≠′  accept) =  εϕ 2  =  

= (the probability to be error in any bit accepted by Bob)

(1)

In asymptotic case ( ∞→n ) we have the following sufficient conditions to get at
least n bits accepted by Bob (it allows him to form the subset cI , nIc = ) and to
correct all errors in 

cI
x  using check string cs , respectively:

2/1≥ε , (2)

r ~  )( 2 εϕnH , (3)

where r  is the length of check strings 0s  and 1s , H(…) is the entropy function [5]. (It
is easy to see that the inequality (2) is trivial because it has solution 2/10 ≤≤ϕ ).

The main theorem of privacy amplification [6] says that with high probability the
amount of Shannon’s information 0I , leaking to Bob about the secret string cb  is
bounded by the following inequality

2ln/2 )(
0

cIrlnI −−−−≤ , (4)

where )10( <<= ααnl  is the length of the secret strings 0b  and 1b ,
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cI  is Renyi (or collision) information obtained by Bob about the string 
cI
x .

The amount of collision information in any of erased bits is zero, while the amount
of collision information containing in the string of accepted bits can be expressed
asymptotically as follows [6]:

cI  ~  ( )( )εϕ 21 Hna − , (5)

where an  is the number of bits accepted by Bob.
Taking into account that asymptotically an  ~  εn  and substituting (3) and (5) into

(4) we obtain the following sufficient condition to be exponential decreasing of
information about cb , as n ∞→ :

( ) ( )( ) 011)( 22 >−−−−= εϕεεϕαϕα HHf (6)

In a particular case of one-bit secret strings 0b  and 1b  (α  = 0), we get from (6)
the following condition to be secure OT protocol

( ) ( )( ) 011)( 22
0 >−−−= εϕεεϕϕ HHf (7)

The solution to the last inequality with respect to ϕ  shows that it will be true for
every ϕ  within the interval (0, 1/2). In [1] only the case l = 1 has been considered and
one of the open questions mentioned there was to find an efficient algorithm for
(
1
2 )-OT using BSCϕ  for values ϕ  above 0.1982. We have proved it for the same as

in [1] algorithm but taking into account the collision information in accepted bits of
the string 

cI
x . The intervals for possible bit error probabilities ϕ  providing the

secure OT protocol for different secret rates α  are presented in Table 1.

Table 1. The intervals of bit error probabilities ϕ  providing the secure OT protocol

α 0 310− 5 310−⋅ 210− 0.05 0.1 0.2 0.215

ϕ < 0.5 < 0.487
> 0.0005

< 0.470
>0.003

< 0.458
> 0.006

< 0.403
> 0.026

< 0.355
> 0.054

< 0.248
> 0.142

< 0.211
> 0.176

It is worth noting that for 310−>α  the bit error probability has to be sensibly
restricted not only from above but also from below. OT protocol does not work at all
for BSC ϕ , 2/10 ≤≤ ϕ  if α  > 0.217.

We can see from (4) and (6) that the more is the function )(ϕαf , the more efficient
is OT protocol. Thus if the parties can establish BSC ϕ  with different bit error

probabilities ϕ , they can optimize ϕ  to provide a maximum of )(ϕαf . For example,
if α  = 0, then )(0 ϕf  reaches the maximum for 2.0≈ϕ .
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3   Generalizations of base OT protocol

The algorithm to accomplish OT protocol proposed in [1] and described in Section 1
is very natural but not the only one possible to solve the same problem. Let us
consider some possible generalizations of it.

3.1   Algorithm with a-multiple repetition of bits ix , 2n,2,1,i K= .

It is very natural to generalize algorithm given in [1] if Alice repeats a times each of
2n random chosen bits ix , ni 2,,2,1 K=  and sends them to Bob over BSC ϕ . Bob
accepts each received a-bit string if and only if the number of zeroes or ones in this
string is at least b, b < a. This algorithm results in changing the probabilities (1) in the
following manner

P(accept) ∑
∈

−∈

−−




=′=

),(
),0(

)1(

abi
bai

iai
i
a ϕϕε

(8)

P( xx ≠′  accept) ∑
=

−−






′
=

a

bi

iai
i
a )1(

1
ϕϕ

ε

(9)

In asymptotic case this algorithm results in the following sufficient conditions to
receive by Bob at least n accepted bits in the string ix′ , ni 2,,2,1 K=

2/1≥′ε (10)

and to correct all errors in 
cI
x using the check string cs

r ∼  









−







′∑=
−

a

bi

iai
i
anH )1(

1
ϕϕ

ε (11)

The amount of collision information in any bit received by Bob depends on the
Hamming weight of a-bit string corresponding to this bit. It can be shown that the
average collision information obtained by Bob about the string 

cI
x  in asymptotic

case is the following

cI  ∼  ( )
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Now if we substitute (11) and (12) for r and cI  in (4), respectively, we can find the
optimal bit error probability ϕ  that maximizes the exponent in (4) or functions

)(ϕαf  and )(0 ϕf similar to those given in (6), (7), respectively. Unfortunately, the
inequality (10) is not as trivial as it was for (2). So we have to maximize )(ϕαf ,

)(0 ϕf over the set ϕ  satisfying (10).
The numerical calculations show that the function )(0 ϕf  by (7) reaches the

maximum 0.21 for ϕ  = 0.2, while similar function for generalized algorithm (a > 2,
b < a) reaches the maximum 0.285 for ϕ  = 0.327, if a = 8, b = 6, that is a slightly
better result.

3.2   Algorithm with arbitrary linear binary (N, K)-code (K < n) used to send K-
bit substrings of the string ix , 2n,2,1,i K= .

Next step to generalize the base OT protocol is to replace a-multiple repetition of bits
ix , ni 2,,2,1 K=  by the use of some binary linear (N, K) code V known for both

parties and having maximum possible minimum code distance D.
Without the loss of generality let us take βKn = , where β  is some integer. Alice

and Bob also agree on Kq 2= -ary ( N~ , K~ )-Reed Solomon (RS) code, where β=K
~ .

Then the base OT protocol has to be changed to the following one:
1. Alice picks at random 2n bits ix , ni 2,,2,1 K= , encodes this string by blocks of

(N, K)-code and sends these blocks jy , β2,,2,1 K=j  over BSC ϕ .
2. Bob receives the noisy versions of all blocks, corrects at most t < [(D – 1)/2] errors

on every block and detects errors using (N , K)-code. He accepts blocks with
undetected errors and rejects blocks with detected errors.

3. Bob selects the desired bit string cb , where c = 0 or 1 and picks two disjoint
subsets 0I , 1I  of the set (1, 2, …, 2 β ), satisfying the conditions: β== 10 II ,

cI  – contains only the numbers of blocks accepted by Bob.
4. Bob sends both 0I  and 1I  to Alice over noiseless channel.
5. Alice computes the q-ary check strings 0s  and 1s  to 

0I
y , 

1I
y  respectively using

( N~ , K~ )-RS code. She sends then both 0s  and 1s  to Bob over noiseless channel.

6. Alice picks random n-bit string m, computes )(ˆ
000 Im xhbb ⊕= , )(ˆ

111 Im xhbb ⊕= ,

where 
0I
x , 

1I
x  are the information symbols of blocks corresponding to subsets 0I

and 1I  respectively and sends 0b̂ , 1b̂ , and m to Bob over noiseless channel.
7. Bob corrects errors on 

cI
x′  using cs , recovers 

cI
x  and computes the desired secret

)(ˆ
cImcc xhbb ⊕= .
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It is easy to show that in asymptotic case (n ∞→ ) the following sufficient
condition has to be hold for the number KNR

~~~
−=  of q -ary check symbols of

( N~ , K~ )-RS code transmitted over noiseless channel to correct all errors in the
string 

cI
x

R
~  ∼  qPP

q

P
P ueue

ue
ue 222 log)1(log)1(

1
log 








−−+

−
− β , (13)

where ueP  is the probability of undetected error obtained after a completion of error
correcting and detecting procedures by (N, K)-linear binary code V . Because each of
q-ary symbols can be represented by qK 2log=  binary symbols we automatically get
the following number of binary check bits

R  ∼  =







−−+

−
− qPP

q

P
PKK ueue

ue
ue 222 log)1(log)1(

1
log
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−−+

−
−= )1(log)1(

1
log

~
22 ueue

ue
ue PP

q

P
PK (14)

The sufficient condition to receive by Bob at least β  accepted (without detected
errors) code blocks of (N, K)-code among all β2  code blocks can be expressed as
follows

∑
=

− >−






t

i

iNi

i

N

0

2/1)1( ϕϕ

The bottleneck of this algorithm is the finding the collision information obtained
by Bob about the string 

cI
x  taking into account that this substring has been

transmitted by code blocks of the code V.
If we assume that the amount of collision information coincides with the amount of

Shannon information in asymptotic case with large probability, then we can use the
results of [7] to express cI  as follows

cI  ∼  












−− ∑

−

=

KN

j
jj GPGPNHK

2

1
2 )(log)()(ϕβ , (15)

where H(…) is the entropy function,

∑
=

−−=
n

i

ini
ijj AGP

0

)1()( ϕϕ ,

ijA  – is the number of words of weight i in the j-th coset of the standard

decompositions VVN (weight distribution of cosets).
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Substituting (14) for r and (15) for cI  into exponent of (4) and dividing the result
by n we get the following function (similar to (6)) that should be maximized over

)2/1,0(∈ϕ

−











−−+

−
−−= )1(log)1(

1
log

1
1)( 22 ueue

ue
ue PP

q

P
P
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(16)

We note that the probability ueP  can be found for the chosen (N , K)-code as
follows [8]
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∑
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=
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tji
tijt jiNAA ),(, ,

t is the multiplicity of errors correcting by the code V, providing t≤ [(D – 1)/2], where
D is the minimum distance of the code V,
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),( ,

iA is the number of code words of weight i (weight distribution function) of the
code V. We note that 1ii AA = .

It is seen from (16) and (17) that OT protocol optimization requires the knowledge
of weight distribution of cosets for chosen code V. Unfortunately this distribution is
known only for a limited classes of linear binary codes [8].

4   Non-asymptotic case

Let us consider the base protocol [1]. The requirement that the number of accepted
bits in the string ix′ , ni 2,,2,1 K=  has to be at least n is not necessary for Bob to
receive the desired secret cb  because he can correct both errors and erasures in the
chosen substring 

cI
x of length n using check string cs  of the code C. If the minimum
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code distance of this code is d then it is capable to correct both t errors and t′  erasures
when the following condition holds [9]

2t +  ≤′t  d – 1 (18)

It is easy to show that if Bob corrects both erasures and errors in some n-bit
substring 

cI
x′  of 2n-bit string ix′ , ni 2,,2,1 K= , then the probability to recover 

cI
x

correctly can be upper bounded as follows
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(19)

The inequality (4) can be used to estimate the amount of Shannon’s information 0I

leaking to Bob about the string cb , where 
1cc II γ= , γ  is the number of accepted bits

in 
cI

x  and 
1c
I  is the amount of collision information obtained by Bob about each of

these accepted bits. Because the execution of the base protocol results for Bob in
BSC ϕ′  with εϕϕ 2=′  we get for 

1c
I  [6]

( ) ( ) 




 +−+=

2222
2 1log1

1
εϕεϕcI (20)

To provide the guaranteed security of OT protocol we have to design it under the
conservative assumption that Bob can be a dishonest party and distribute the accepted
(non-erased) bits equally between substrings 

cI
x′ ,

cI
x′  thinking to extract at least some

information from both secrets 0b  and 1b . If we want to prevent this attack then one
can find cI  from (4) for given value 0I , where r is the number of check symbols for
chosen (n + r, n)-code C and estimate the probability of risk to be accepted by Bob at
least 2 γ  bits on the string ix′ , ni 2,,2,1 K= , where 

1cc II=γ , as follows

∑
=

−−







=

n

i

ini
r i

n
P

2

2

2)1(
2

γ

εε (21)

The problem how to select the main parameters of OT base protocol in non-
asymptotic case can be solved by the following algorithm:
1. Fix rP , 0

~
I , cP , n, l, and ϕ .

2. Find d from (19) satisfying cP  in the point 1 given ϕ  and n.
3. Find r using the bound for BCH codes given n and d.
4. Find γ  from (21) given n, ϕ  and rP .
5. Find 

1c
I  from (20) and then 

1cc II γ= .
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6. Find 0I  from (4) given n, l, r, and cI .

7. If 0I  that was found in the point 6 occurs at most equal to 0
~
I  given in the point 1,

then decrease n and repeat the points 2-6. Otherwise optimize ϕ  to provide a

positive result. In the case if no one ϕ  gives 00
~
II ≤  then increase n and repeat the

points 2-6.
Example. Let us take l = 20, cP  = 0.9999, rP  = 

410− , 0I  = 
1010−  bit. Then we can

evaluate (following algorithm above) the minimal possible n = 3840 that results in
r = 255, d = 43 and optimal chosen ϕ  = 0.0453.

We can see from this example that OT protocol “works”, in fact, because it
provides both reliability ( ≥cP  0.9999) and security ( ≤0I

1010− , ≤rP   410− ).
Unfortunately the length of the string x has to be significant (n = 3840) but this is the
feature of this base OT algorithm.

5   Discussion of the main results and some open problems

Our contribution (in comparison with paper [1]) is the following:
• extension of OT protocol to multibit secret strings,
• tighter bounds on the bit error probabilities that makes the base OT protocol more

feasible,
• generalizations of base OT protocol,
• performance evaluation of OT protocol in a non-asymptotic case.

We showed that base OT protocol practically “works” (in non-asymptotic case),
although it requires a significant bit string to be sent over BSC ϕ . This protocol is the
remarkable example of the combination of both codes and cryptography. In fact, on
the one hand OT protocol does not work without the use of error correcting codes and
on the other hand OT based on noisy channel is typical cryptographic protocol that is
in addition information-theoretically secure.

We do not consider in the current paper how to prevent attacks on OT protocol,
that can be initiated by dishonest Alice, who deviates from base OT protocol to find
out which of two secrets Bob wants. (The solution to this problem was given in [1]
and it also holds for our extensions.)

To extend (
1
2 )-OT protocol to the case (

1
L )-OT protocol, there exist different

possibilities to proceed. The simplest way is to arrange a special dichotomous
procedure  that reduces several (

1
2 )-OT protocols to one (

1
L )-protocol. (The

complexity of such (
1
L )-OT protocol is (L – 1) times more than complexity of (

1
2 )-OT

protocol). Next way is to use base protocol [1] for L secret strings initially. It results
in harder conditions than (6) and (7) to be feasible (

1
L )-OT protocol in BSCϕ . We are
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going to publish these results later and to specify which of (
1
L )-protocol versions is

the best.
Finally the main problem that has to be solved for practical implementation of OT-

protocol (as well as for other protocols based on noisy channels) is an arrangement of
BSC ϕ  between parties. This problem has already been discussed in [2]. We can add

only that there is some progress in our investigations  to arrange BSC ϕ  as quantum
channel with low intensity of random polarized photons.
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