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Abstract - We develop the idea to achieve the cryptographic primi-
tive of Bit Commitment based on the existence of the Binary Sym-
metric Channel [1]. Our contribution (in comparison with [1]) is to
extend this cryptographic protocel to a non-asymptotic case (finite
length of blocks transmitted between parties). To solve this preb-
lem we derive the formulas to estimate security and reliability of
this protocol and present the algorithm that optimizes the main its
parameters to provide minimal complexity. Some examples are
" given to demonstrate that this protocol is in fact reliable and in-
formation-theoretically secure. We also discuss the problem — how
to establish a noisy channel connecting parties.

Index Terms — Cryptographic protocols, privacy amplification,
error-correcting codes, information theory.

I. INTRODUCTION

A cryptographic protocol consists of algorithms for
communications between different parties, adversaries or
not. The goal of the protocol is something beyond the
simple secrecy of message transmission or authentica-
tion. The list of the most important cryptographic proto-
cols includes: secret sharing, subliminal channel, ver-
sions of digital signature, zero-knowledge proofs of
knowledge, secure elections, secure multiparty computa-
tions, digital cash and others. The most simple of them
that are sufficient to accomplish many complex protocols
can be called cryptographic primitives. The two primi-
tives known as Bit Commitment and Oblivious Transfer
are elementary protocols that are sufficient to accomplish
any Mental Games [2]. The current paper considers the
first of these cryptographic primitives. In the case of Bit
Commitment protocol, one of the parties (Alice) wants to
commit to a prediction b but does not want to reveal that
prediction to another party (Bob) until sometime later.
Bob, on the other hand, wants to make sure that the
author cannot change her mind after this party has com-
mitted to her prediction. This protocol can be achieved
by the following simple algorithm:

1) Bob generates a random bit string R and sends it

to Alice.

2) Alice creates the ciphertext Eg (R,b) with some
random key K and sends it to Bob.

(Bob can not decrypt the message, so he does not know
what the bit b is.)

If Alice decides to unveil her commitment, she initi-
ates the next protocol:

1) Alice sends the key to Bob.

2) Bob decrypts the message to reveal her the bit.
He checks his random string R to verify the bit’s
validity.

It is easy to see that the protocol given above requires

limitation on parties’ computing power, otherwise Bob

can find the key K before Alice decides to unveil her
commitment and decrypt b using this key. Alice can also
find another key K ’, that provides  equality
Ex (R,b) = Ef(R,b’) to change her commitment to 5’
in place of b.

This paper (following the idea of [1]) considers a
scenario where both Alice and Bob have no limitation on
their computing power. It would be impossible to ac-
complish this protocol without another assumption. Such
the extra assumption we make is that Alice and Bob are
connected by Binary Symmetric Channel (BSC,), that is
a channel that will change the value of each bit with
probability p as it travels from one party to the other.

II. THE DERIVATION OF THE MAIN NON-ASYMPTOTIC
RELATIONS FOR SECURITY AND RELIABILITY OF BIT
COMMITMENT PROTOCOL

Let as consider first of all Bit Commitment protocol
(with extension to multiple-bit string b in place of one-bit
string b) proposed in [1]. Alice and Bob agree a binary
linear (n, k) code C with certain minimal code distance d.
There exists a BSC, to send messages from Alice to Bob
and in addition noiseless channels to exchange messages
between Alice and Bob. (This assumption that might
appear at first glance to be unlikely, is discussed in Sec-
tion III).

After this initialization phase Alice and Bob have to
perform the following Protocol I:

1) Alice picks at random one of code words ce C

and a random #n-bit string m. Then Alice com-
putes an [-bit string x such that

b=x®h,(c), 1

where @ is modulo two addition and 4,,(c) is a
hash function chosen from universal, class and
determined by the string m, while argument of
this function is a code word ¢. This function maps
¢ to an [-bit string, where [ is the length of the
string b intended to be committed. (In a particular
case when b is one-bit string, a string x can be
removed from (1) because it is always possible to
choose such string m to get either 0 or I for
b=h,(c)).
2) Alice sends ¢ over BSC, and announces both m
and x to Bob over noiseless channel.
3) Bob stores ¢, m and x, where ¢’ is the received
version of ¢ corrupted by channel noises.
If Alice wants to unveil her commitment b, she initi-
ates the next Protocol 2:



1) Alice sends the code word ¢ to Bob over noise-
less channel.

2) Bob reveals commitment b using (1) knowing x,
m and c. He computes the Hamming distance
dy(c,c’y between ¢ and ¢ and if
dy(c,c’) <1y, where l; is a certain threshold,
then Bob accepts b, otherwise he rejects.

The performance evaluation of this protocol can be

presented by the following values:

1) The amount of Shannon’s information I, leak-
ing to Bob about commitment b just after the re-
ceiving ¢’, m and x, taking into account his
knowledge of the code C and BSC,.

It is more reasonable in fact to use another
criterion of security, namely, the probability P,of
correct optimal decoding b by Bob based on his
knowledge C, ¢’, m, x and hash function 4,,(...) .
This probability can be upper bounded using
Fano’s inequality [3]

-P
1+(1- Pc)logzlzl——%+ P.log, P, <1, 2)

In particular, when & is one-bit commitment, the re-
lation (2) is transformed to the following

1+(1-P)log,(d~P.)+P,log, P, <I,.  (3)

2) The probability P to occur dy(c,c)<l,,
where ¢ € C, ¢ #c. This means that Alice has
been operating successfully to cheat Bob.

3) The probability P to occur dy(c,c”)>1y. This
means that bit commitment b is rejected by Bob,
while Alice is honest in her execution of the pro-
tocol.

Our purpose is to find the relations which connect the
values introduced above to each other and with parame-
ters of code C and BSC,. Eventually we want to show
that this protocol “works” in reality, that is, it provides
reasonable security and reliability for finite number n of
channel uses. But before of doing this we want to show
(following [1] but extending this approach to the case
[ >1) that this protocol “works” in asymptotic case, as
R~ eco.

We can upper bound the amount of Shannon’s infor-
mation I, leaking to Bob about the commitment b given
¢’, m, x and with the knowledge a fact that ce C, as
follows [4]

2—(n—r—t—l)
In2

IA

I, 4

where 7 is Renyi information that Bob gains of ¢’ re-
ceived on BSC,,
r =n—k is the number of check symbols of code C.

Let us consider the exponent in (4). We can take
t =n(1—H(p)), where H(...) is the entropy function, as

n—» oo with high probability [4], and put ! =cn, where
O<a<l. (So we can consider « as the rate of proto-
col). Substituting these variables into (4) we get the fol-
lowing conditions to be exponential decreasing I, to
Zero, as n—> oo,

k—n(l-H(p))—no>0,

that is equivalently to the following inequality
k
RC =;>Cp+a, (5)

where R is the code rate of chosen code C. (This fact
does not contradict our intuition, because otherwise Bob
could correct all errors in ¢’, due to Shannon’s theorem
[31)

We are going to show next that there exists such
threshold /;, that Bob is able to accept Protocol 2 with
high probability, if Alice is honest, that is, she sends at
the step 1 of Protocol 2 the same code word ¢ as she did
at the step 2 of Protocol 1, and to reject with high prob-
ability Protocol 2 if Alice sends to him another code
word ¢ # ¢ at the step 1 of Protocol 2. Moreover we will
assume (in line with [1]) that dishonest Alice can send
not necessary the code word ¢ but any n-bit string w at
the step 2 of Protocol 1. (Bob is unable to verify this
fraud because w is sent through noisy channel).

Let us consider the case (without the loss of general-
ity) when Alice sends to Bob at the step 2 of Protocol 1
such n-bit string w that the nearest code word
ce Coccurs at Hamming distance s from w, that is
dy (c,w)=s. It results in the following inequality (as a
consequence the Hamming distance property)

dy(w,&)=d-s, (6)

where ¢ # ¢ is any code word.

If Alice announces either the code words ¢ or ¢ at the
step 1 of Protocol 2, the average Hamming distances
between the string ¢’ received by Bob and these code
words will be the following, respectively

dy(c,c)=s(l-p)+(n—s)p=np+s(1-2p) Q)

dy€,c)z@d-s)1-p)+(n—-d+s)p
=np+(1-2p)d-ys) ®)

We can let without the loss of generality that

d=npy,y>0ands=fn, 0< B <1.
Then the relations (7) and (8) can be rewritten as follows

dy(c.c’)=np+fBn(1-2p) ®
dy (¢,c") 2 np+n(py - B)1-2p) (10)

Since Bob assumes that Protocol is honest so that Alice
sends ¢ at the step 2 of Protocol 1, he can find the aver-



age Hamming distance dy(c,c’)=np and then select
the threshold Iy =n(p+¢€), £€>0 to provide the prob-
ability of false rejection of honest Protocol as small as
desired, as n—> 0. We can see from (9) and (10) that
dy(c,c’) increases, while dj (c,c”) decreases, when f3
increases and, dj (c,c¢") = dy(¢,c") if B=py/2. This
implies a fact that it is sufficient for Bob to reject all
code words ¢ for B < py/2, because he rejects ¢ if
B> py/2 and thus dishonest Alice is unable to open
the commitment of both strings corresponding to ¢ and
¢ . As a result of this remark we obtain the following
sufficient inequality that a false protocol initiated by dis-
honest Alice will be rejected by Bob for any s = Bn

e<f2—y-(1—2p> 11

It easy to see that this inequality is true for any symbol
error probability (0< p<1/2) taken on BSC, connect-
ing Alice and Bob. Moreover this inequality does not
contradict to the previous inequality (5). In fact, if we let
that a chosen code C satisfies Varshamov-Gilbert bound
[5], it results in the following inequality for large n

H(py)<H(p)-a, (12)

that does not contradict to inequality (11).

Thus, we have shown that Bit Commitment Protocol
given above “works” in any BSC,. What we are going to
do next is to consider a non-asymptotic case, when we
expect to find the optimal symbol error probability p,
which provides the minimal complexity of the Protocol
for some given security and reliability.

If the linear (n, k) code is shared by Alice and Bob as
well as some BSC, connecting them, Bob can select such
threshold [y, that provides a certain probability Ps of
false rejection of honest protocol using the following
relation

Po= Y (’?]p"a—p)"“' (13)

i=ly+1

Assuming that dishonest Alice can send some string w,
such that the nearest code word ce C occurs at the
Hamming distance s from w, and taking into account the
inequality (6), we may estimate the probabilities that the
announcements about either the code word ¢ or another
code word ¢ sent by Alice will be accepted by Bob as
follows, respectively '

P(c) = z(j}(l -p)p
i=0
lo=if . _ _ .
°E(n ; S}ﬂa— Py 14)

j=0

d-s d- . »
P@)< 2( i s}a —p) pi=
i=0

lo=if .
.Z(n d+s)pj(1—
=\ J

Thus a designer of this protocol has to fix the parameter
Ps which meets the desired reliability and the parame-
ter P, which meets the security of protocol and has to
select the other parameters k, Iy, p, n in such a way to
provide a proper resistance against Alice’s fraud in the
Protocol 2. In addition the minimal possible complexity
of execution of the protocol should be provided. (This
complexity first of all can be estimated by code
length n). There may be also another purpose to optimize
the parameters, if we want to maximize the rate of proto-
col o =1/n for some given block length n. Note that the
amount of Renyi information ¢ in (4) can be evaluated for
non-asymptotic case as follows [4]

p) a5

t=n(l+log,(p”> +(1-p)?)). (16)

The problem how to select the main parameters of Bit
Commitment protocol can be solved by the following
algorithm:

1) Fix Pg, P.,l,nandp.

2) Find the threshold [, from (13) given Py, p and n.

3) Find I, from (2) or (3) given P,.

4) Evaluate the minimal possible valuek =n-r,
where r can be found from (4).

5) Find the minimal Hamming distance d of (n, k)
linear code using the bound for BCH codes [5].

6) Compute P(c) and P(c¢) by (14), (15) for
s=0,,...,[d/2]givenn, p,s and ;.

7) Take a decision whether P(c) and P(¢ ) are
enough or not to protect the Protocol 2 against
Alice’s fraud. If “Yes”, then decrease block
length n. If “Not”, then try to optimize p to pro-
vide a positive answer. In the case if no one of p
provides the desired security against Alice’s
fraud, then increase “n”.

Example. Let us take I =1, p = 0.1, n.= 1023, P, = 107,
P. =0.50001. Then we can evaluate (following algo-
rithm above): Io=2.88 107'%, ¢=730bits, I,= 140,
k=758, d=55. The results of the evaluations P(c) and
P(¢ ) as the functions of s=0,1,...,[d/2] are given in
Table I.



TABLE I
THE PROBABILITIES P(c) AND P(C ) AS THE FUNCTIONS

this protocol should provide the smallest probability
P(c) = P(c ) for s = [d/2] taken over all p.

OF s=0,...,[d /2] GIVEN p=0.1,n = 1023, P = 107, Table II
P. =0.50001, l,= 140, k=758,d =55 THE PROBABILITIES P, = max L(P(c)+P(c)) AND
...S_._
s 0 1 2 3 4 THE VALUES CORRESPONDING TO THEM OF OPTIMAL p
P(c) | 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9998 COMPUTED FOR DIFFERENT 12 AND RESTRICTIONS:
P(c¢) | 0.2754 | 0.3043 | 0.3345 | 0.3656 | 0.3977 P, = 1074, P, = 0.50001
s 5 6 7 8 9
P(c) | 09997 | 0.9996 | 0.9995 | 0.9993 | 0.9991 N > | P - T(P(0)+ PG)
P(c ) | 0.4304 | 0.4634 | 0.4967 | 0.5299 | 0.5629 opt 0<s<[/ 1
s 10 11 12 13 14 1 1023 0.213 0.73069
P(c) | 0.9988 | 0.9985 | 0.9980 | 0.9975 | 0.9968 2 2047 0.187 0.67586
P(c ) | 0.5953 | 0.6271 | 0.6579 | 0.6877 | 0.7162 3 4095 0.179 0.49995
. T e T s T 4 [ 8191 | 0.187 0.49995
P(c) | 0.9960 | 0.9950 | 0.9937 | 0.9922 | 0.9903 5 | 16383 | 0.169 0:49995
P(c¢ ) {07433 | 0.7690 | 0.7932 | 0.8157 | 0.8366
B 20 1 %) 23 4 These probabilities computed for different n and for the
P(c) | 0.9881 | 0.9854 | 0.9823 | 0.9785 | 0.9741 optimal values p corresponding to them are presented in
P(Z) 0.8 558 O' 3735 0.8895 0'90 40 0'9170 Table I1I. We will discuss these results in Section III.
5 25 26 27 TABLE III
P(c) | 0.9689 | 0.9629 | 0.9560 THE PROBABILITIES P(c) = P(Z) FOR s = [d/2] AND
P(c )| 09286 | 0.9389 | 0.9480

We can see from this table that it does not meet the re-
quirements to be secure against Alice’s fraud. In fact, if
Alice selects s=|d/2]|=27, she will be able to decept
any code word ¢ or ¢ of her choice with high enough
probability = 0.95. Before moving on to a more appro-
priated choice of parameters it is reasonable to give a
stronger definition for the protocol to be secure against
Alice’s fraud.

We have two possibilities to proceed. The first corre-
sponds to “flipping a coin over telephone” based on Bit
Commitment protocol [6). Then dishonest Alice could
win at each “flipping” with the knowledge of Bob’s
“flipping” selecting either ¢ or ¢ . But the probability for
each trial to be accepted is

P, =5(P()+P@)).

If this value is close to 1/2 (or smaller) then dishonest
Alice has no advantage over honest one. Thus a designer
of Bit Commitment protocol has to provide

ok 2 5 (P(©)+ P(2))
at most close to 1/2. These values computed for different
n and the optimal p which minimize P, are presented in
Table II.

We will discuss these results in Section III.

The second possibility is to use this protocol to com-
mit to Bob by Alice the bit, which determines one of two
known unique files. In this case dishonest Alice can be
interested to get not too small both probability P(c) and
P(¢ ) for some s=0,,...,[d/2]. Hence a designer of

CORRESPONDING TO THEM VALUES OF OPTIMAL p
COMPUTED FOR DIFFERENT n AND RESTRICTIONS:

P, =107, P, =0.5001

# n P, P(c) = P(c) for s = [d/2]
1] 1023 0.213 0.738

2| 2047 0.187 0.682

3| 4095 0.179 0.268

4 | 8191 0.187 0.020

5| 16383 0.169 4.4-107°

III. DISCUSSION OF THE MAIN RESULTS
AND OPEN PROBLEMS

We have presented non-asymptotic formulas to esti-
mate reliability and security of Bit Commitment protocol
based on noisy channels proposed in [1]. Using these
relations and the algorithm given above we can find all
the parameters of Bit Commitment protocol in order to
provide the desired level of reliability and security. Ta-
bles IT and III show that this protocol “works” in non-
asymptotic case. In fact in the case of “flipping coin over
telephone” this table gives the following results:

n=4095, P, =0.5001, P, =107,
max 3 (P(c) + P(€)) = 0.49995.

This means that Bob can “open” commitment just after
the completion of Protocol 1 with the probability
0.50001 of correct bit receiving, that is practically the
same as it could be got after his random guess before
execution of this protocol. If Alice is honest party Bob



will reject Bit Commitment protocol with small enough
probability 10™. On the other hand, if Alice tries to
cheat and sends either ¢ or ¢ of her choice to win in
each of “flippings” she has practically no advantage over
her honest behavior because the probability in each
“flipping” to be accepted is at most 0.49995.

It is worth noting that for each n there is the optimal
value of the symbol error probability p that provides
minimum P, .

Protocol “works” also in the case when Alice com-
mits to Bob the bit to select one of two possible files. In
fact, it results from Table IIl, that the probability to
“open” commitment of Alice’s choice without rejection
of protocol by Bob is at most 4.4-107 for n= 16383,
P, =0.5001, P; = 107, This means that dishonest Alice
has practically no chances to cheat Bob.

Next thing to do is to discuss a problem how (n, k)
code and noisy BSC, connecting Alice and Bob can be
chosen. It does not matter which of the parties select
(n, k) code if it is given as BCH or concatenated code,
because there is a possibility to check its minimal code
distance very easily. To arrange BSC, is harder problem.
The BSC, can be formed to be sure, by some third trusted
party that can guarantee its properties. But in this case it
can be useless to consider the protocol described above
because Bit Commitment Problem could be also solved
by trustee. The best solution would be to arrange BSC,
by Alice and Bob without any outside assistance. It is
impossible to permit Bob to do that, because Bob is able
then to select a less noisy channel and hence to “open”
Bit Commitment just after the completion of Protocol 1
using an error correction procedure with chosen before
(n, k) code: It seems to be more attractive to arrange the
noisy channel by Alice, because she has to be interested
to provide the symbol error probability p in line with an
agreement between parties. Otherwise either Bob will be
able to “open” Bit Commitment just after the completion
of Protocol 1 using error correction procedure or the
protocol will be rejected very often by Bob. But there is
unfortunately another type of attack for dishonest Alice.
She can generate binary symmetric channel with symbol
error probability p but having memory. Then she can
perhaps select such code word ¢ to provide the prob-
ability P(¢ ) greater rather than (15). This results in a
requirement to verify by Bob the properties of BSC, ar-
ranged by Alice. Because Bob knows both transmitted
word ¢ and received word ¢ after the completion of
Protocol 2, he can verify the properties of this channel
using appropriated statistical criteria. (Of course this
approach should be studied in more detail).

It can be a more severe situation if Alice generates
discrete noise, that looks like a random one (that is, it
passes all statistical criteria) but she knows the error
pattern e =c’® w received by Bob. Then Alice can find
some code word ¢ that gives the desired commitment
and dp (¢,¢") Sdy (w,c¢") <1, (Such code word has to be
found, otherwise Bob could recover ¢ just after the com-
pletion of Protocol 1 using the minimal Hamming dis-

tance algorithm for decoding). The feature is in the con-
dition that Alice should not know precisely the error
pattern received by Bob! The way out can be to form
BSC, as quantum channel with low intensity of random
polarized photons like it was described in [7]. The differ-
ence is only that Bob has to use Bredbard base to receive
modulated pulses and parties do not agree bases at all. It
results in the symbol error probability p = 0.15, that is
suitable for Bit Commitment protocol considered above.
Bob cannot improve his channel, because the choice
other than Bredbard base results in a greater symbol error
probability. On the other hand, Alice has no reason to
change her modulation for each of pulses but she can do
it for certain pulses in order to cheat Bob being an-
nounced false code word ¢ . (This approach is a subject
of our further investigations.)

Eventually there may be such situation when Alice
and Bob are connected with both noiseless and noisy
channels, which can be distinguished by these parties.
Then Bit Commitment protocol described above can be
applied for any inferred level of reliability and security.

We are going to consider next Oblivious Transfer
protocol [1] for non-asymptotic case to move informa-
tion-theoretical secure protocols closer to being practical.
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