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Abstract

Oblivious transfer (OT) is a two-party primitive which is one of
the cornerstones of modern cryptography. We focus on providing
information-theoretic security for both parties, hence building OT as-
suming noisy resources (channels or correlations) available to them.
This primitive is about transmitting two strings such that the receiver
can obtain one (and only one) of them, while the sender remains ig-
norant of this choice. Recently, Winter and Nascimento proved that
oblivious transfer capacity is positive for any non-trivial discrete mem-
oryless channel or correlation in the case of passive cheaters. Their
construction was inefficient. The OT capacity characterizes the max-
imal efficiency of constructing OT using a particular noisy primitive.
Building on their result, we extend it in two ways: 1) we construct ef-
ficient passively-secure protocols achieving the same rates; 2) we show
that an important class of noisy correlations actually allows to build
OT with non-zero rate secure against active cheating (before, positive
rates were only achieved for the erasure channel).

Keywords: Information-theoretical security, oblivious transfer,
noisy resources

1 Introduction

Oblivious transfer (OT) [24, 20, 9] is an important and well-studied crypto-
graphic primitive. Being one of the corner stones of modern cryptography,
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it implies any secure two-party computation [13]. It comes in many flavors,
but all of them turned out to be equivalent [4]. Informally, OT is a means
to transmit data such that the sender is guaranteed that the data will be
partially lost during the transmission, but he does not know what exactly
the receiver gets. It is impossible to obtain OT “from scratch”, i.e., in the
plain model when information-theoretical security is required for both the
sender and the receiver. Hence, one needs additional assumptions. One of
them is the use of noisy resources (channels or pre-distributed noisy data, i.e.
noisy correlations). This assumption seems quite natural as the real com-
munication channels are inherently noisy. Recently, the concept of oblivious
transfer capacity was introduced by Nascimento and Winter [19] (following
the manuscript [18]). The OT capacity is a measure of how efficient one
can use a noisy resource in order to obtain oblivious transfer from it. In
this paper, they proved that any non-trivial discrete memoryless noisy re-
source can be used for obtaining noisy channels (this was first independently
proved in [18] and in [7]). Moreover, for the case of passive cheating, they
proved that for any non-trivial noisy resource, its OT capacity is positive
by presenting protocols achieving non-zero rate. However, those protocols
were inefficient (as they relied on random coding arguments).

In this paper, we show that the results of [19] can be obtained using
efficient protocols. For any non-trivial correlation, we present such efficient
protocols with non-zero rate, hereby showing that oblivious transfer capacity
of these correlations is bounded away from zero in the case of honest-but-
curious sender but completely malicious receiver.

Additionally, for a wide class of noisy correlations (here called symmetric
basic correlations (SBC)), we completely characterize the oblivious transfer
capacity in the case of passive cheaters (with efficient protocols) and show
protocols which are optimal up to a constant in the case of active adver-
saries. We emphasize that previously, all the reductions achieving non-zero
rates and based on noisy channels [6, 5, 18, 7] (with the exception of reduc-
tions to the erasure channel1 [8]) always considered an honest-but-curious
sender. Hereby, we enlarge the class of channels for which oblivious transfer
is practical to SBC.

Symmetric basic correlations are important as many previous protocols
for obtaining oblivious transfer from noisy resources used it as an inter-
mediate step towards obtaining a fully secure OT. Thus, computationally
efficient and rate-efficient constructions of SBC from noisy resources are of
special relevance in noise-based cryptography.

1Which is the same as Rabin oblivious transfer [20].
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Related work. Crépeau and Kilian [6] showed that any binary sym-
metric channel provides us with oblivious transfer. The efficiency of this
result was consequently improved in [5]. Crepeau’s result was extended to
any non-trivial binary symmetric channel in [23]. A general characterization
of which noisy channels yield oblivious transfer was independently obtained
in [14] (with efficient protocols) and in [18] (where the classification was
also extended to noisy correlations).

Winter et al. [25] introduced the concept of cryptographic capacity of
a channel for secure two-party computations. They derived a single-letter
characterization of the commitment capacity of a discrete memoryless chan-
nel. Recently, Imai et al. [12], showed the OT capacity of the erasure channel
to be equal to 1/2 in the case of passive cheaters and presented a protocol
achieving the rate 1/4 for the case of active cheaters. Using the Interactive
Hashing [17], Crépeau and Savvides [8] showed a reduction of string OT to
bit OT achieves an optimal rate of 1/2. We conjecture that their protocol
can be changed to provide the reduction of the string OT to Rabin OT
achieving the optimal rate of 1/2.

Structure of the paper. Section 2 establishes the notation and pro-
vides some useful facts from information theory and cryptography. In Sec-
tion 3, oblivious transfer is formally described and its security definition
is provided. The main results together with security proofs are contained
in Section 4. Our concluding remarks and the open questions are given in
Section 5.

2 Preliminaries

Here we introduce our notation and some tools that are useful in proving
our main result.

Given a sample space (a set of events), a random variable X is a mapping
from the sample space to a certain range X and it is characterized by its
probability distribution PX that assigns to every x ∈ X the probability
PX(x) of the event that X takes on the value x.

We deal with two kinds of noise: a discrete memoryless channel, gener-
ated by the stochastic map
W : X −→ Y; and secondly: independent, identically distributed (i.i.d.)
realizations of a pair of random variables (X,Y ) (range X × Y with distri-
bution PXY , in both cases with finite sets X ,Y).

For elements of information theory, we refer the reader to the book by
Thomas and Cover [22].
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The Shannon entropy of a random variable is a measure of the uncer-
tainty of a random variable X

H(X) = −
∑

x

PX(x) log PX(x)

assuming that 0 log 0 = 0. All the logarithms in this papers are taken to the
base 2.

The mutual information between two random variables is defined as

I(X; Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)

The min-entropy of X is

H∞(X) = min
y

log(1/PX(x))

The min-entropy of X conditioned on Y is

H∞(X) = min
y

H∞(X|Y = y)

We also will use the following quantities

H0(X) = log |{x ∈ X|PX(x) > 0}|
and

H0(X|Y ) = max
y

H0(X|Y = y)

We will use the so-called smooth entropies as defined by Renner and
Wolf [21]. For 1 > ε ≥ 0 the ε-smooth min-entropy is defined as

Hε
∞(X) = max

X′:‖PX′−PX‖≤ε
H∞(X)

where ‖PX′ −PX‖ denotes the statistical distance between the distributions
PX′ and PX . The conditional min-entropies are defined similarly:

Hε
∞(X|Y ) = max

X′Y ′:‖PX′Y ′−PXY ‖≤ε
H∞(X|Y )

Analogous definitions exist for smooth H0(X) and its conditioned version.
Smooth entropies are of special importance since many nice properties of
Shannon entropies (such as sub-additivity, chain rule and monotonicity),
which are known to not hold for H0 and H∞, do hold in an approximated
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version for smooth entropies [21]. Two of these properties are important for
our result.

For any ε, ε′ > 0, and any distribution PXY Z we have

Hε+ε′
∞ (X|Y Z) ≥ Hε

∞(XY |Z)−H0(Y |Z)− log(1/ε′) (1)

Hε+ε′
∞ (XY |Z) ≥ Hε

∞(X|Z) + Hε′
∞(Y |XZ) (2)

Assuming that Z is independent of XY , we obtain

Hε+ε′
∞ (X|Y ) ≥ Hε

∞(XY )−H0(Y )− log(1/ε′) (3)

Hε+ε′
∞ (XY ) ≥ Hε

∞(X) + Hε′
∞(Y |X) (4)

The smooth min-entropy gives us the amount of randomness that can
be extracted from a random variable X given some side information Y , as
proved in [21]. We will make use of the Left-over Hash-Lemma [15] (also
known as privacy amplification [2]). We state the version presented in [11].

Theorem 1 Let X be a random variable over {0, 1}n. Let Un and Um

be independent and uniform over {0, 1}n and {0, 1}m, respectively. There
exists an efficient function Ext : {0, 1}n×{0, 1}m, such that, if H∞(X|Y ) ≥
m + 2 log(1/ε), then ‖(Ext(X,Un), Un, Y )− (Um, Un, Y )‖ ≤ ε.

A particular example of such efficient function Ext is a two-universal
hash function [3]. Finally, we need the following result originated from [10].
The basic idea is to concatenate a random linear code with the Reed-
Solomon code.

Theorem 2 There exists an error-correcting code, efficiently encodable and
decodable, such that for any channel W : X −→ Y, it achieves the capacity
of W .

For the definition of triviality for noisy correlations see [25, 19] for details.

3 Oblivious Transfer Protocols

In this section, we give the definition of security used in this paper. We
closely follow [19] for this presentation. A two-party protocol consists of a
program which describes a series of messages to be exchanged (over a noisy
and/or a noiseless channel) and local computations to be performed by the
two parties. The protocol is said to halt if no more local computations or
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message exchanges are required. At the end of an execution of a proto-
col, each party emits an accept/reject message, depending on the messages
he/she received and on the result of local computations. In this paper we
concentrate on 1-out-of-2 oblivious transfer protocols.

In an oblivious transfer protocol, there are two parties: a sender (Alice)
and a receiver (Bob). The sender’s inputs to the protocol consist of two
strings of length k. We denote those strings by Ui = b

(i)
0 b

(i)
1 . . . b

(i)
k−1, i ∈

{0, 1}, where b
(i)
j ∈ {0, 1}, 0 ≤ j ≤ k − 1. The receiver’s input is a single

bit c. At the end of the protocol Bob receives Uc as his output, while Alice
receives nothing. Informally speaking, the protocol is correct, if for honest
players, Bob receives his desired output and both players do not abort the
protocol. It is said to be private if Alice has no information on Bob’s choice
and Bob learns information concerning at most one string.

The protocol (for honest players) or more generally any strategy (in the
case of cheaters) defines random variables for all the messages exchanged
and results of computations performed during an execution of the protocol,
depending on their mutual inputs. For the sake of simplicity, we use the same
notation for outcomes of a random experiment and their random variables.
Denote by VA(VB) the random variable which represents all the information
in possession of Alice (Bob) at the end of the protocol (including the results
of all local computations, local random samplings, local inputs and messages
exchanged). This information is also known as the view of a player. We
denote an execution of a program G by players A and B on inputs xA and
xB which generates the outcomes yA and yB by G[A,B](xA, xB) = (yA, yB).
A party receiving no output is represented by y = ∆.

We restrict the following definition and analysis to the particular case
where the inputs of the honest players are chosen at random. This does
not compromise the generality of our results, as random instances of oblivi-
ous transfer can easily be converted into OT protocols with specific inputs
without any further assumptions, as shown in [1].

Definition 3 A protocol G[A, B](xA, xB) = (yA, yB) is an ε-correct imple-
mentation of a 1-out-of-2 string oblivious transfer protocol,

(
2
1

) − OT k for
short, if at the end of its execution for honest players Alice and Bob, we
have that

Pr
{
G[A, B]((U0, U1), c) 6= (∆, Uc)

} ≤ ε (5)

for any Ui ∈ {0, 1}k, i ∈ {0, 1} and c ∈ {0, 1}.
It is ε-private for Bob if for any possible behavior of Alice,

I(VA; C) ≤ ε (6)
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where I(·; ·) is Shannon’s mutual information, VA is the random variable
which represents Alice’s view after the completion of the protocol and C
is the random variable which represents Bob’s input c (assuming uniform
distribution).

Consider the set of all possible pairs of k-bit strings τ , {τ : (t0, t1), t0, t1 ∈
{0, 1}k}. Let T be a random variable uniformly distributed on τ and Ti be
the random variable, corresponding to ti, i ∈ {0, 1}. The protocol is ε-private
for Alice if for any behavior of Bob, for any T , there exists a random binary
variable ĩ independent of T such that such that

I(T ;VB|Tei) ≤ ε, (7)

where ĩ = c in the case of honest Bob.
A protocol is said to be ε-private if it ε-private for both Alice and Bob.
A protocol G[A,B](xA, xB) = (yA, yB) is said to be an ε-private, ε-

correct 1-out-of-2 string oblivious transfer protocol secure against honest-
but-curious Alice when in the above definitions Alice has to follow the pro-
tocol but tries to gather as much information as she can from her view of
the protocol VA.

Let G[A,B](xA, xB) = (yA, yB) be a protocol implementing ε-private,
ε-correct

(
2
1

)
-OTk, based on a noisy channel W : X −→ Y or a noisy cor-

relation PXY on X × Y. Let n be the number of invocations of the noisy
channel/correlation. The 1-out-of-2 rate of G[A,B](xA, xB) = (yA, yB) is
defined as: R2 = k

n .
A rate R∗ is said to be achievable if for any ε, γ > 0, there exists a

protocol G[A,B](xA, xB) = (yA, yB) implementing ε-private, ε-correct
(
2
1

)
-

OTk which, for sufficiently large n, has R2 ≥ R∗ − γ. The supremum of all
achievable rates is called the 1-out-of-2 OT capacity of the channel W or of
the correlation P , denoted C(2

1)-OT(W ) or C(2
1)-OT(P ).

4 Main Result

According to the result of [19], in order to prove that the oblivious transfer
capacity for the honest-but-curious sender and malicious receiver is positive
for any non-trivial correlation, we just need to prove it is positive for a partic-
ular kind of correlation, called in [19] a symmetric basic correlation (SBC).
We assume that the players have access to an unlimited bi-directional noise-
less channel.

There are three main settings for the considered protocols: 1) Both
players can cheat actively; 2) Alice is passive and Bob is active; 3) Both
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players are passive. In Setting 1, secure OT can be achieved only based on
SBC, while in Settings 2 and 3, our result works for any non-trivial noisy
correlation.

Now, we formally define SBC, introduce our protocol (which is in the
spirit of [4]) and argue its security for all the above cases.

Let p be a constant such that 0 < p < 1 . In SBC (X, Y ), X is uniformly
distributed on {0, 1} and the range Y of Y is partitioned into three sets:
Y = U0 ∪ E ∪ U1, of non-zero probability under the distribution of Y , with
the following properties.

• For all y ∈ E , Pr{Y = y|X = 0} = Pr{Y = y|X = 1}.
• U1 = { y′ : for all y ∈ U0 we have

Pr{Y = y|X = x} = Pr{Y = y′|X = x} ∧
Pr{Y = y|X = 1} < Pr{Y = y|X = 0} ∧
Pr{Y = y′|X = 1} > Pr{Y = y′|X = 0} }

• Pr{Y ∈ E} = 1− p.

From Alice’s point of view it looks like the uniform input to a binary
channel, while for Bob it looks like the output of a distinguishable mixture
of two channels: an erasure channel and a channel W : {0, 1} −→ U0 ∪ U1,
with conditional probabilities W (y|x) = 1

p Pr{Y = y|X = x}. If Bob finds
y ∈ E he has no information at all about the input (a perfect erasure), but
for y ∈ Ui he has a (more or less weak) indication that x = i ∈ {0, 1} because
the likelihood for x = 1− i is smaller.

It is clear that the correlation (X, Y ) is completely characterized by p and
W . Thus, we denote this distribution SBCp,W . For the sake of simplicity of
this presentation, we analyze the case when p = 1/2. However, our protocols
and proofs can be easily adapted for the case 0 < p < 1.

Suppose Alice and Bob are given n identical, independent executions of
SBC1/2,W . Thus, Alice and Bob receive n-tuples (x1, . . . , xn) and (y1, . . . , yn),
respectively.

Remember that by Theorem 2, for any channel W there exists an efficient
encodable and decodable error-correcting code C achieving the capacity of
W .

In our protocol, Alice has inputs U0, U1 ∈ {0, 1}k and Bob has input
c ∈ {0, 1}.
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Protocol I

1. Bob chooses two sets S0 and S1, s.t. S0, S1 ⊂ {1, 2, . . . , n}, S0 ∩ S1 = ∅,
|S0| = |S1| = (1/2− η)n, 0 < η < 1/2, where (1/2− η)n is an integer.
Define q = (1/2− η)n. Bob chooses S0 and S1 so that, for any i ∈ Sc,
yi is not an erasure. Bob sends the sets S0 and S1 to Alice over the
noiseless channel.

2. Denote the jth element of Si by Si(j). After receiving S0 and S1, Alice
computes the tuples ρ0 = (xS0(1), . . . , xS0(q)), ρ1 = (xS1(1), . . . , xS1(q)).
Alice then computes the syndromes of ρ0 and ρ1 by using an error
correcting code C with rate Cap(W )− γ, where γ > 0 and Cap(W ) is
the Shannon capacity of the channel W . She sends the syndromes to
Bob.

3. Alice picks up a random matrix G dimension (1/2− η)n× nR, where
R is the rate of the protocol. She computes the vectors A0 = ρ0 ∗ G
and A1 = ρ1 ∗ G where ”∗” is the usual matrix multiplication, and
then encrypts her inputs as follows: B0 = A0 ⊕ U0 and B1 = A1 ⊕ U1

where ”⊕” is a bit-wise exclusive-or. She sends G, B0 and B1 to Bob
over the noiseless channel.

Using its respective syndrome, Bob computes ρc and then calculates
Ac = ρc ∗G. He obtains Uc = Ac ⊕Bc.

If Bob experiences a decoding error when computing ρc, he defines Uc

as the zero-vector.

Before analyzing the protocol security, we note that with exponentially
bounded probability Bob sees a number of non-erasures between (1/2− δ) n
and (1/2 + δ) n, for some positive constant δ, thus we assume that this is the
case. Note also that, for the positions where Bob does not receive erasures
his view is exactly like the output of the channel W with input X.

We state our main result. Let X and Z be random variables describing
the input of SBC1/2,W and the output of W , respectively.

Theorem 4 Protocol I implements an ε-private, ε-correct 1-out-of-2 obliv-
ious transfer protocol for any R < I(X;Z)/4 against active cheaters and
R < I(X; Z)/2 against passive cheaters.

Active cheating. We sketch here a proof of why this theorem holds,
the complete proof is given in the full version of the paper.
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Let’s first analyze if the protocol is secure against a malicious Bob.
We should prove that Bob obtains knowledge about at most one of Alice’s
strings.

Dishonest Bob who tries to obtain knowledge on both Alice’s inputs U0

and U1 will distribute positions where he did not receive an erasure into both
sets S0 and S1. The number of non-erasures that Bob sees is in between
(1/2− δ) n and (1/2 + δ) n, for some positive constant δ. Thus, we can
assume that in one of the sets, let’s say S1 we will have a number of non-
erasures no larger than (1/4 + δ) n. Denote the random variable associated
with the syndrome of ρ1 by Syn1. We will slightly abuse the notation
and denote by ρ1 the string computed by Alice and, at the same time, its
corresponding random variable.

We are interested in the following quantity Hε∞(ρ1|Y nSyn1) which gives
us how much secret information Bob can extract from ρ1. We first note
that q = (1/2− η)n symbols of Y n will not be related to ρ1 at all, because
they will be used for constructing ρ0 and because of the i.i.d. assumption on
(X, Y ). Denote the remaining q symbols of Y n which are possibly related
to ρ1 by Y q. Also, note that ρ1 will consist of q general instances of X,
again because of the i.i.d. assumption on (X, Y ). Thus, instead of ρ1 we
will just write Xq to denote the part of Xn that is used to compute ρ1.
Finally, observe that no more than just (1/4 + δ) n bits of the remaining Y q

bits related to ρ0 will be non-erasures. Thus, we are left with

Hε
∞(ρ1|Y nSyn1) = Hε

∞(Xq|Y qSyn1) (8)

By sequentially applying (1) and (2) we obtain

H2ε
∞(Xq|Y qSyn1) ≥ Hε/2

∞ (Xq|Y q)+Hε/2
∞ (Syn1|XqY q)−H0(Syn1)−log(1/ε)

(9)
that gives us

H2ε
∞(Xq|Y qSyn1) ≥ Hε/2

∞ (Xq|Y q)−H0(Syn1)− log(1/ε) (10)

Denote the equivocation of the channel W specified in SBCp,W by
H(X|Z). It is clear that H0(Syn1) ≤ n

2 (H(X|Z)−γ). We state the following
lemma whose proof appears in the full version of this paper.

Lemma 5 For any 0 < ε′ < ε < 1, δ′ > 0 we have

Hε
∞(Xq|Y q) ≥ Hε′/2

∞ (X(1/4−δ′)n) + Hε′/2
∞ (X(1/4+δ′)n|Z(1/4+δ′)n)
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The intuition behind the lemma is that we can split Y q in two random
variables Y q′

∆ , where q′ = (1/4− δ′)n which consists of the positions where,
with an exponentially small (in n) probability, there will be only erasures
and Zq′′ , q′′ = (1/4+ δ′)n which consists of the positions where Bob receives
X through the channel W . We then split the input random variable Xq

accordingly in Xq′
∆ for those inputs where Bob received erasures and Xq′′ for

those inputs where Bob received them as through W . Note that, Y q′
∆ Zq′′ ,

for large enough n is the typical space of Y q, thus, the statistical difference
of these two distributions goes to zero exponentially as n becomes large by
the asymptotic equipartition property. Therefore, we can find appropriate
0 < ε′ < ε < 1 so that we have:

Hε
∞(Xq|Y q) ≥ Hε′

∞(Xq′
∆Xq′′ |Y q′

∆ Zq′′)

As Y q′
∆ is completely useless for Bob (it gives no information at all on

Xq), we obtain

Hε
∞(Xq|Y q) ≥ Hε′

∞(Xq′
∆Xq′′ |Zq′′)

By applying Equation (2), we get

Hε′
∞(Xq′

∆Xq′′ |Zq′′) ≥ Hε′/2
∞ (Xq′

∆ |Zq′′)−Hε′/2
∞ (Xq′′ |Zq′′)

However, by definition, Zq′′ is independent from Xq′
∆ , thus we obtain

Hε
∞(Xq|Y q) ≥ Hε′/2

∞ (Xq′
∆)−Hε′/2

∞ (Xq′′ |Zq′′)

our desired result.
We then note that according to [11] for general random variables (X,Y ),

we have Hε∞(Xn|Y n) ≥ nH(X|Y )− 4
√

n log(1/ε) log(|X |).
Putting everything together,

Hε
∞(ρ1|Y nSyn1) ≥

(
1/4− δ′

)
nH(X) +

(
1/4 + δ′

)
nH(X|Z)−

n

2
(H(X|Z)− γ)− log(1/ε)− 8

√
n log(1/ε) log(|X |), (11)

and by the definition of mutual information,

Hε
∞(ρ1|Y nSyn1) ≥
n(I(X; Z)/4− δ′I(X;Z)− γ)− log(1/ε)− 8

√
n log(1/ε) log(|X |) (12)
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Noting that log(|X |) = 1, making ε = 2−αn, α > 0 and choosing an
appropriate constant ε′ > 0 satisfying simultaneously ε′/3 > δ′I(X;Z)− γ,
ε′/3 > 8

√
α and ε′/3 > α we obtain

Hε
∞(ρ1|Y nSyn1) ≥ n(I(X;Z)/4− ε′)

Note that the random matrix G is, in fact, a two-universal hash func-
tion2. Hence, applying Theorem 1 with m = (1

4I(X;Z) − ε − 2α)n = Rn,
we can see that Bob’s amount of information on A1 will be at most 2−αn.
Thus, a cheating Bob cannot obtain simultaneously knowledge on Alice’s
two inputs.

The correctness of the protocol follows from the fact that, with high
probability, by using its respective syndrome, Bob can compute ρc and then
calculate Ac = ρc ∗G. He obtains Uc = Ac ⊕Bc.

Security against malicious Alice: it is easy to see by inspecting the proto-
col that she has only two ways to cheat. First, she may try to distinguish the
sets S0 and S1 as for which contains erasures and which does not. However,
the probability to become erasure is equal for both inputs 0 and 1 of SBC,
therefore, Alice’s best strategy here is guessing at random. The second way
is sending a random string instead of one of the syndromes. Indeed, this
will lead Bob to a decoding error with high probability, if Alice spoils the
syndrome Sync. In this case, Bob could complain but this would disclose his
choice c. If he does not complain, then his output is undefined. When Al-
ice happens to spoil Syn1−c, honest Bob simply accepts the protocol, again
disclosing his choice. Note that all the above cases contradict Definition 3.

It is easy to see that the last instruction of Step 3 makes this kind of
cheating useless for Alice because even if she sends an incorrect syndrome,
Bob’s output is always well-defined. Besides, he may mark Alice as a cheat-
ing player for the higher order protocols.

Passive cheating. In the case of passive cheating, Bob would not split
his erasures between S0 and S1, thus one can see that the achievable rate
will be twice the one achieved in the previously stated analysis. Therefore,
in the case of passive adversaries we have that any rate R < I(X; Z)/2 is
achievable.

Upper bounds. In [26], it was proved that the mutual information be-
tween two noisy correlations is a secure monotone, in the sense it can not be
increased by local computations and noiseless communications between the

2In principle, any efficiently computable two-universal hash function can be used in
our protocol.
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parties holding the correlations. This fact implies that the mutual informa-
tion between the correlations is an upper bound on their oblivious transfer
capacity. Thus, in the case of an SBCp,W , its oblivious transfer capacity
is upper bounded by its mutual information of I(X; Y ) = pI(X; Z). For
p = 1/2 we obtain that COT (SBC1/2,W ) < I(X; Z)/2 thus showing that our
protocols are optimal in the case of passive cheaters.

5 Conclusions and Future Works

In this paper, we presented an efficient protocol for implementing oblivious
transfer that achieves a non-zero rate for any non-trivial correlation. In the
case of symmetric basic correlations, we show that for passive adversaries,
the oblivious transfer capacity is efficiently achievable. In the case of active
adversaries, our protocol is optimal up to a constant. An open question left
by this work is to obtain the oblivious transfer capacity of symmetric noisy
correlations in the case of active adversaries. A possible way of doing this
is by using interactive hashing in order to prevent Bob from cheating, as
proposed in [8] in the case of 1-out-of-2 bit OT. The problem of computing
the oblivious transfer capacity for general correlations remains wide open.
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