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Abstract—One of the most important primitives in two-
party distrustful cryptography is oblivious transfer, a complete
primitive for two-party computation. Recently introduced, the
oblivious transfer capacity of a noisy channel measures an
efficiency of information theoretical reductions from 1-out-of-k,
l-string oblivious transfer to noisy channels. It is defined as the
maximal achievable ratio [/n, where [ is the length of the strings
which are to be transferred and n is the number of times the
noisy channel is invoked. This quantity is unknown in a general
case. For discrete memoryless channels, it is known to be non-
negligible for honest-but-curious players, but the non-zero rates
have not ever been proved achievable in the case of malicious
players. Here, we show that in the particular case of the erasure
channel, more precise answers can be obtained. We compute the
OT capacity of the erasure channel for the case of honest-but-
curious players and, for the fully malicious players, we give its
lower bound.

I. INTRODUCTION

Being invented in a number of different settings by Wies-
ner [25], Rabin [23] and Even, Goldreich and Lempel [17],
oblivious transfer (OT) is a primitive of particular importance
in cryptography as it is complete for two-party secure com-
putation which was shown in the computational model [18]
as well as in the unconditional model [20]. Oblivious transfer
is about transmitting secrets from a sender Alice to a receiver
Bob in such a way that Alice is only sure that Bob did not learn
all of them without knowing what exactly he learned. There
are two flavors! of this primitive: first, where Bob is allowed
to choose what he will receive, the I-out-of-2 OT [25], [17].
In this paper, we are concerned with implementing this type
and henceforth we shall refer to as just OT. The other flavor is
Rabin OT [23], where Alice sends a secret and with probability
1/2 Bob receives this secret or nothing at all and he always
learns which case has occurred. In the communication theory,
this primitive is known as the erasure channel. In this paper,
we shall be concerned with how efficiently one can implement
OT based on it.

In our scenario, we demand information-theoretic (or un-
conditional) security for the two mutually distrustful players
Alice and Bob, i.e., they are allowed unlimited computing
power, while only a negligible (in some security parameter)
failure probability can be tolerated. It is a well-known fact

'Which appeared to be equivalent [4] in the sense that they can be efficiently
reduced to each other.
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that in this setting, OT is impossible “from scratch”, i.e.,
using only error-free communication and local randomness.
This means that one needs some additional assumptions which
could be, e.g., a noisy communication channel connecting the
parties [7], [5], [15], [11], [21], [8], trusted initializer [24],
pre-distributed correlated randomness [21], bounded storage
model (BSM) [6], [10], [14], quantum channel and bounded
quantum storage [13], [12], hybrid2 bounded storage model
BSM [19].

The implementations of OT based on noisy channels is
of particular interest since noise is inherently present in any
physical channel. At the same time, a common drawback of
the noise-based OT implementations is their (in)efficiency.
The required number of the noisy channel uses is of order
O(log(1/a)?*¢) for any € > 0 where « is an upper bound
on all security failure probabilities in the protocol [8]. In the
notation which we introduce in this work, this means that the
rate (that is the ratio of the length of Alice’s secrets to the
overall number of noisy channel uses) of such implementation
is zero. The rate can only be non-zero if the number of channel
uses is of order O(log(1/a)) (or lower). This means that
the OT capacity (being a supremum of all achievable rates)
is, in particular, a good measure for practical applicability
of a given primitive for building OT based on it. We note
that an efficient and practical OT protocol based in bounded
quantum memory model (together with the model itself) was
proposed by Damgard, Fehr, Salvail and Schaffner in [12], but
the notion of the OT capacity for quantum channels is still to
be defined. In this paper, we are only concerned with classical
communications.

Speaking of the related results, we first note that the OT
capacity is unknown for noisy channels in general. It is known
to be non-negligible for honest-but-curious (or passively cheat-
ing) players [21], [8] (implicitly, it can be found already
in [7]), but the non-zero rates have not ever been achieved in

ZBasically, this is a BSM with an additional computational assumption
which must hold only online (i.e., while the protocol is taking place) and later
it can be compromised but this will not influent the security of the protocol.
If an additional assumption holds then this will be information-theoretically
secure.

For the sake of completeness, we note that such flavor of security (i.e., as
long as an online assumption holds, the protocol is unconditionally secure
no matter what happens afterwards) was introduced in [1] under name of
everlasting security.
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the case of fully malicious players. The problem of reducibility
between different weaker primitives to OT received a lot of
attention in the recent years which is not surprising as it seems
difficult to find a (classical) physical device or phenomena
which would produce OT as a black box.

In this paper, we begin to investigate the OT capacity of
some particular known primitives by showing that for the
erasure channel, in the case of passive adversaries, one can
compute this quantity. This is not very surprising in the light
of the fact that OT and the erasure channel (or Rabin Oblivious
Transfer [23]) are equivalent [4]. Although, in this work, we
exploit the protocol in the spirit of [5]. Furthermore, for the
case of malicious players, we introduce a lower bound for the
OT capacity.

Our protocol is similar to Protocol 3.2 by Brassard, Crépeau
and Wolf [3] but their protocol is based on 1-out-of-2 OT, so
some modification is needed to employ the erasure channel.
The lower bound of Lemma 7 is similar to lower bounds by
Dodis and Micali [16], and Wolf and Wullschleger [26] which
were obtained in a context of reducibility between flavors of
k-out-of-n OT for strings of different length.

Independently of this work, Crépeau and Savvides in their
recent paper [9] provide, in particular, an optimal reduction
from 1-out-of-2 OT to the erasure channel. Their reduction
has a rate 1/2, i.e., it achieves the OT capacity of the erasure
channel. The improvement is based on employing Interactive
Hashing [22] which, at the same time, gives a substantial com-
munication complexity overhead comparing to our protocol.
The optimal protocol requires O(k) rounds of communication’
where £ is the length of the secret bit-strings. Ours is constant-
round, actually it requires only 3 messages. As a matter of fact,
we believe that our protocol is round-optimal, but we do not
claim it here.

Our paper is organized as follows: in Section II, we give
some useful notation and definitions. In Section III, we show
a lower bound for the OT capacity in the case of malicious
players. Section IV is devoted to calculation of the OT capacity
for the case of honest-but-curious players.

II. PRELIMINARIES

We begin with some basic definitions, most of them were
first introduced in [21]. A two-party protocol consists of a
program which describes a series of messages to be exchanged
(over a noisy and/or a noiseless channel) and local computa-
tions to be performed by the two parties. The protocol is said to
halt if no more local computations or message exchanges are
required. At the end of an execution of a protocol, each party
emits an accept/reject message, depending on the messages
he/she received and on the result of local computations.

In an oblivious transfer protocol, the sender’s input consists
of m strings, each one having length k. We denote those strings
by Ui = 057007 |, 0 <i<m, where b\ € {0,1},
0 < 57 < k — 1. The receiver’s input is a single integer c,
0 < ¢ < m. At the end of the protocol Bob receives U, as
his output, while Alice receives nothing. The protocol is said
to be correct, if for honest players, Bob receives his desired
output and both players do not abort the protocol. It is said

3These communication are noiseless, the noisy channel is used, as well as
in our case, O(n) times where n is a security parameter.

to be private if Alice has no information on Bob’s choice and
Bob learns information concerning at most one string.

The protocol (for honest players) or, more generally, any
strategy (in the case of cheating) defines random variables for
all the messages exchanged and the results of computations
performed during an execution of the protocol, depending on
their mutual inputs. For the sake of simplicity, we use the same
notation for outcomes of a random experiment and the corre-
sponding random variable. Denote by V4 (Vp) the random
variable which represents all the information in possession of
Alice (Bob) at the end of the protocol (including the results of
all local computations, local random samplings, local inputs
and messages exchanged). This information is also known as
the view of a player. We denote an execution of a program by
the players Alice and Bob on inputs x4 and xp which gen-
erates the outputs y4 and yp by [A, B](z4,25) = (Ya,yB).
The event that a party receives no output is represented by
y=A.

Definition 1: A protocol [A,Bl(xa,x5) = (ya,ys) is
an e-correct implementation of a 1-out-of-m string oblivious
transfer protocol, (T) -OT* for short, if at the end of its
execution by the honest players Alice and Bob, we have that

PI‘{[A, B]((U07U1, .. .7Um,1),c) 7& (A,Uc)} S €

for any U; € {0,1}*, 0 <i<mand 0 < c < m.
It is e-private for Bob if for any possible behavior of Alice,

I(V4;C) <e

where I(-;-) is Shannon’s mutual information, V4 is the
random variable which represents Alice’s view after the com-
pletion of the protocol and C' is the random variable which
represents Bob’s input ¢ (assuming uniform distribution).

It is e-private for Alice if for any possible behavior of Bob,
at most one of the m strings is not e-invisible to Bob. Here, we
say that the ith string is e-invisible to Bob for a given strategy
> he follows if there exists a random variable V' (depending
on X, Up,...,U;i—1,Uiy1,...,Upn_1) taking values in views
such that for all U;,

Pr{Vp #V} <e

A protocol is said to be e-private if it is e-private for both
Alice and Bob.

A protocol [A, Bl(za,z5) = (ya,yp) is said to be an e-
private, e-correct 1-out-of-m string oblivious transfer secure
against honest-but-curious players when in the above defi-
nitions the parties A and B follow the protocol but try to
gather as much information as they can from their views of
the protocol V4 and Vp, respectively.

As a genuine noise is considered an expensive resource, it
is desirable to minimize as much as possible the use of the
noisy channel/correlation when implementing string oblivious
transfer. In order to measure how efficiently an OT protocol
uses the noisy channel, we introduce the concept of rate of an
oblivious transfer protocol. Let [A, Bl(x a,x5) = (ya,yn) be
a protocol implementing e-private, e-correct 1-out-of-m string
oblivious transfer, based on a noisy channel W : X — ) or
a noisy correlation Pxy on X x ). Let n be the number of
invocations of the noisy channel/correlation in this protocol.
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Definition 2: The 1-out-of-m oblivious transfer rate of

[A, Bl(za,25) = (ya,yp) is defined as
Ro =2

In our protocols, n will work asa security parameter. Thus,
we are interested in the behavior of R, when n approaches
infinity.

A rate R* is said to be achievable if for any €,y > 0, there
exists a protocol [A, Bl(xa,zp) = (ya,yp) implementing e-
private, e-correct (’?)-OT’C which, for sufficiently large n, has
R, > R"—~.

Definition 3: The supremum of all achievable rates is called
the 1-out-of-m OT capacity of the channel W or of the cor-
relation P, denoted respectively, C(T)-OT(W) or O(T)-OT(P)'

We stress once more that these rates count only the use of
the channel/correlation — protocols will also use error-free
communication which we consider unlimited.

III. LOWER BOUND

In this work, we consider the case when Alice has two
secrets as her input, i.e., m = 2. We first give the protocol
(adapted from [5], Protocol 4.2) which achieves the rate Ry =
1/4 and is secure against fully malicious players. Let Alice’s
input strings be Uy and U; and Bob’s choice bit be c.

Protocol

1) Alice chooses a random binary string 71,...,7r, of
dimension n and sends it to Bob over the erasure
channel.

2) After receiving the string, Bob chooses two sets Sp
and Sy, st. Sp, 51 C {1727...,71}, 50031:(0,
|Sol =151 =(1/2=n)n, 0 < n < 1/2, where
(1/2 — m)n is an integer. Let ¢ € {0,1} be Bob’s input
to the OT protocol. Bob chooses Sy and Sy so that, for
any ¢ € S¢, r; is not an erasure. Bob sends the sets Sy
and S; to Alice over the noiseless channel.

3) Denote the jth element of S; by S;(j). After receiving
So and S7, Alice generates a random matrix G of dimen-
sion (1/2 —n)n x n/4. She computes the vectors Ay =
po* G and Ay = py G where pg = [g,(1), - -+ T80 (n)]
and p1 = [rg,(1),--- 78, (n)]s *” is the usual matrix
multiplication, and then encrypts her inputs as follows:
By = Ag @ Uy and By = A; @ U; where ”®” is a
bitwise exclusive-or. She sends G, By and B; to Bob
over the noiseless channel.

Finally, Bob computes A, = p. * G and obtains
U.=A.® B..

We first argue the security of this protocol.

Theorem 4: There exist € > 0 and 0 < 7 < 1/2 such that
the above Erotocol is e-correct and e-private implementation
of ("')-OT" for sufficiently large n.

Proof (Sketch). Follows from the argument in Section 4 of [5].

For correctness, we note that if 0 < 1 < 1/2 holds and the
players behave honestly, then by the law of large numbers,
Bob is almost certainly able to find enough of received bits to
fill the vector p.. Then, the correctness property can be easily
verified by inspecting the steps of the protocol.

As for Alice’s privacy, we note that in Step 2, the malicious
Bob will not be able to fill both vectors pg and p; with
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bits, so at least in one of the vectors, there will appear a
constant fraction of erasures. It is clear that on the average,
the highest number of bits which can appear in either vector is
n/4 independently of Bob’s cheating strategy. Therefore, the
choice of the dimension for matrix G allows us to use the
privacy amplification result [2] which implies that Bob will
have exponentially small (in n) information about at least one
of Uy or Uy, i.e. at least one of the bit strings Uy or U; will
be e-invisible for Bob for any € > 0.

Privacy for Bob follows from the fact that the sets Sy and
S1 give Alice no information on c since the bits are erased by
the channel independently. O

The next corollary follows immediately.

Corollary 5: Rs = 1/4 for the case of malicious players.

At the same time, if the parties are honest-but-curious, a
rate equal to 1/2 can be obtained.

Corollary 6: Rs = 1/2 for the case of honest-but-curious

players.
Proof Sketch. 1Tt easy to see that when Bob follows the proto-
col, the privacy amplification is not needed because Bob will
indeed put all the received bits in the subset p. corresponding
to his choice. Then, by the law of large numbers, p;_. will
contain only erasures.

Let us now modify our protocol such that Alice encrypts
her secrets with pg and p; instead of Ag and A;. Clearly, this
protocol is an e-private, e-correct 1-out-of-m string oblivious
transfer secure against honest-but-curious players.

Note that this protocol has a rate Ry approaching 1/2 when
n approaches infinity. The proof now follows. a

We prove the optimality of this rate in the following section.

IV. CAPACITY FOR HONEST-BUT-CURIOS CASE

Consider a protocol implementing ("f) -OT* based on the
existence of an erasure channel with erasure probability 1/2.
Let X™ and Y denote the n-dimensional random variables
representing, respectively, an input and an output of the binary
erasure channel. Denote the conversation over the noiseless
channel by 7. The set of m k-bit strings which constitute
Alice’s input to the protocol is represented here by U. Alice’s
and Bob’s views after the protocol is completed are denoted
by V4 and Vp, respectively.

Lemma 7: For any secure (f) -OoT* protocol based on the
erasure channel, the rate Ry = 1/2 is optimal.

Proof Sketch. (From Definition 1, we know that H(U|Vg) =

(m—1)k as Bob does not learn m—1 strings held by Alice after

the protocol is finished. Furthermore, it is clear that, if Bob

gets to know X", he should be able to completely break the

security of the protocol, since otherwise, Alice must have some

prior knowledge on Bob’s choice. Thus, H(U|VpX™) = 0.
We have that,

HU|X"Vg) = H(UX"|Vp) — H(X"|Vp),
therefore
H(X"U|Vp) = H(X"|VB),
it follows that H(X"|Vg) > H(U|Vp).
Then, taking into account Vz = TY™, we have
nH(X|Y) > H(X"[Y™) > H(X"|Y"T)
= H(X"|Vg) 2 H(U|VB) = (m — 1)k
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Thus, making m = 2 we obtain
Ry =k/n < H(XI|Y)
For the erasure channel, H(X|Y) =1/2. O

Corollary 8: C(z)_OT(erasure channel) = 1/2 for the case
1

of honest-but-curious players.
Proof. Follows from Corollary 6 and Lemma 7. a

V. CONCLUSION AND OPEN QUESTION

In this work, we have introduced the concept of rate of
oblivious transfer protocol and defined the OT capacity as the
supremum of all achievable rates. We have also shown that the
OT capacity of the erasure channel with erasure probability 1/2
is 1/2 (bits per instance) for the passive case and exposed the
protocol whose rate is 1/4 for the fully malicious case.

The question of computing the OT capacity of general noisy
channels/correlations is open.
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