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Abstract—Cayrel et al at SAC 2010 proposed a zero-knowledge
identification scheme based on syndrome decoding of q-ary codes.
It is a 5-pass scheme with soundness error q

2(q−1)
. We propose

an alternative to this scheme by generalizing (binary) Stern zero-
knowledge identification from CRYPTO 1993 directly to q-ary
setting. Our proposal is a 3-pass scheme with soundness error
2/3. We show that it is superior to Cayrel et al scheme in terms of
communication cost for the case q = {3, 4}. A possible application
for q-ary code-based identification schemes with small q is a proof
of plaintext knowledge for code-based public key encryption.

Index Terms—zero-knowledge protocol; identification protocol;
syndrome decoding; information set decoding;

I. INTRODUCTION

Identification protocols serve the goal of entity authenti-
cation. Their applications include authentication and access
control services such as remote login, credit card purchases
and many others. Usually, these are interactive two-party
protocols, where one party (called a prover) wants to prove
a possession of some private identification information to
another party (called a verifier).

In the public-key setting, on which we focus in our work,
most of practically used schemes are challenge-and-response.
In this case, zero-knowledge (ZK) identification schemes have
an advantage in the sense that no information on the private
key is released to the verifier. If the eavesdropper observes
the communication between the prover and the verifier, then
clearly she does not gain any information on the private key as
well. Such the scheme is usually constructed as a ZK proof of
knowledge with private key as a witness. This approach was
pioneered by Fiat and Shamir in [9]. We refer the reader to
[26, Ch. 9] for more information on identification protocols.

We focus on code-based identification protocols because
their security is based on hardness of decoding random codes
– the problem which is not known to have an efficient
solution even using quantum computation. Although quantum
computers remain at the early prototype stage of development,
it is desirable to have a secure postquantum alternative for the
schemes based on hardness of discrete logarithm or integer
factorization [26, Ch. 9].

Our scheme is based on hardness of Syndrome Decoding –
a well studied problem – see e.g. [16], [17], [24], [6], [21],
[2]. Currently, the most efficient attack against the parameters
relevant to our scheme is Information Set Decoding (ISD) [22].

Related Works. The first code-based zero-knowledge identifi-
cation protocol was proposed by Harari [13] in 1988, however
Véron showed it insecure [27], and only recently Malek and
Miri [18] fixed the problem. The first secure zero-knowledge
identification protocol based on coding was presented by Stern
[25]. It is a 3-pass protocol with soundness error 2/3, based
on hardness of syndrome decoding of binary codes. Girault
showed a 3-pass identification scheme [11], but it was not
practical. Véron proposed a protocol [28] based on (binary)
General Decoding problem (a dual of Syndrome Decoding)
but this scheme was recently shown insecure by Jain et al [14]
who also presented a secure alternative. Gaborit and Girault
[10] proposed, in particular, a q-ary code based authentication
scheme, but it was based on specific double-circulant binary
codes. Kawachi et al proposed a q-ary identification scheme
in the context of lattices, which is similar to ours. Xagawa and
Tanaka [29] modified the scheme [15] to get a proof of plain-
text knowledge for NTRU public key encryption. Recently,
Cayrel, Véron and Alaoui [7] presented a ZK identification
scheme (we will call it the CVA scheme) based on syndrome
decoding of codes over Fq (q > 2) where the soundness error
is reduced to q

2(q−1) , which is essentially 1/2 for large q.

Our Contribution. The main motivation for our work was
to construct the code-based zero-knowledge identification
scheme for small q > 2, this is also a new q-ary code based
scheme based on stern’s ID scheme. Such schemes may be
applied for instance for proof of plaintext knowledge [19] for
public-key encryption based on codes over Fq [4].

We constructed a generalization of Stern scheme for q-
ary case with soundness error 2/3 and confirmed that its
communication cost is superior as compared to that of CVA
scheme for q = {3, 4}.

In particular, let us consider the 80-bit equivalent security
level, and overall soundness error 2−16. Then for q = 3, our
proposed scheme has 28 rounds and communication cost of
4.79 kilobytes against that of 39 rounds and 7.50 kilobytes,
respectively, with CVA scheme. When q = 4, both schemes
have 28 rounds, and we have 4.33 kilobytes with our scheme
against 4.69 kilobytes with CVA scheme.

It is worth noting, however, that already for q ≥ 5, CVA
scheme comes on top in terms of communication cost. In



particular, for q = 5, our proposal required 28 rounds and
5.08 kilobytes of communication against 24 rounds and 4.99
kilobytes with CVA scheme.

Section II presents necessary definitions and tools. Our
proposed scheme is presented in Section III, its security
argued in Section IV. Performance evaluation is given in
Section V and Section VI contains concluding remarks and
open questions.

II. PRELIMINARIES

We define by wt(x) the Hamming weight of x ∈ Fnq . The
set of all permutations of n elements is denoted by Sn. For
x, y ∈ Fnq , we denote by x+ y an element-wise addition of x
and y over Fq .

An (n, k, d) linear code is a k-dimensional subspace of an
n-dimensional vector space over a finite field Fq , and d is the
minimal distance of the code [23].

Definition 1 (Gilbert-Varshamov Bound [23]).
Let Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x)
be the q-ary entropy function. Let d/n = ζ, and the rate of a
q-ary linear code R = k/n. If 0 ≤ ζ ≤ (q− 1)q, then for any
n, there exists an (n, k, d) code such that

R ≤ 1−Hq(ζ).

We will use the following generalization of a permutation
defined in [7].

Definition 2 ([7]). Let Σ ∈ Sn and γ = (γ1, ..., γn) ∈ Fnq
such that ∀i, γi 6= 0. We define the transformation Πγ,Σ as
follows:

Πγ,Σ : Fnq → Fnq
v 7−→ (γΣ(1)vΣ(1), ..., γΣ(n)vΣ(n)).

It was noted in [7] that ∀v ∈ Fnq and α ∈ Fq , we
have Πγ,Σ(αv) = αΠγ,Σ(v), and that this transformation
preserves the weight, i.e. ∀v ∈ Fnq , wt(Πγ,Σ(v)) = wt(v).
In addition, we observe that ∀v, w ∈ Fnq : Πγ,Σ(v + w) =
Πγ,Σ(v) + Πγ,Σ(w), which implies that Πγ,Σ is a linear
transformation.

A. Hardness Assumption

Definition 3. Syndrome Decoding (SD) Problem.
Input: H $← F(n−k)×n

q , y $← Fn−kq and 0 < ω ∈ N.
Decide: If there exists e ∈ Fnq s.t. HeT = y and wH(e) ≤ ω.

This problem was shown to be NP-complete by Berlekamp
et al [5]. The best algorithm for solving it is the Information
Set Decoding algorithm by Peters [22].

B. Commitment Schemes

Zero-knowledge proofs use commitment schemes as a buil-
ding block. For this section, we borrow the presentation of
[19]. A commitment scheme consists of two phases: the first
one is committing, where a sender P provides a receiver V
with an evidence about input b. The cheating receiver Ṽ cannot
learn b before the second phase, called opening, when P

reveals b to V . The cheating sender P̃ cannot successfully
open b′ 6= b.

Let us denote by 〈P, V 〉A,st the view of the party A ∈
{P, V } at the stage st, which is a concatenation of all
the messages sent and received by A, along with its local
randomness.

Definition 4. A protocol is said to securely implement string
commitment, if at the end of its execution by PPT Turing
machines P (with input b ∈ Fl2, l ∈ N) and V , the following
properties hold:
(Correctness) Pr[〈P (b), V 〉V,Open = “ACCEPT”] with over-
whelming probability.
(Hiding) For any PPT Ṽ , any l ∈ N, any b ∈ Fl2 and b′ ∈ Fl2
such that b′ 6= b, after the committing stage, but before the
opening stage, the distributions

〈P (b), Ṽ 〉Ṽ ,Commit and 〈P (b′), Ṽ 〉Ṽ ,Commit
are indistinguishable. Depending of the type of indistinguisha-
bility, hiding can be statistical or computational.
(Binding) For any P̃ , any l ∈ N, and b′ ∈ Fl2 there exists
b ∈ Fl2 which can be computed by P after the committing
stage, such that the probability

Pr[〈P̃ (b′), V 〉V,Open = “ACCEPT”]

is negligible. If P̃ restricted to run in PPT, then binding is
called computational, if P̃ ’s computing power is not restricted,
then the binding is statistical.

Note that committing to binary vectors does not pose a
problem, since mathematical objects, which we are working
with, will eventually be represented as binary vectors for the
actual implementation.

In the random oracle model (ROM) [3], a string commit-
ment which is both computationally hiding and binding can be
implemented using (idealized) cryptographic hash function. In
the standard model, a computationally hiding and statistically
binding code-based commitment commitment schemes are
known [8], [14].

We denote by Com(x1, x2, . . .) a commitment to values
(x1, x2, . . .).

III. PROPOSED PROTOCOL

We present our proposed zero-knowledge identification pro-
tocol, which is a generalization of (binary) Stern identification
scheme [25] to q-ary case. The main difference is that an
ordinary permutation cannot be used now, since a permutation
of the q-ary witness does indeed release some information
on it, hereby violating the zero-knowledge requirement. We
avoid this problem by employing the generalized permutation
Πγ,Σ introduced in [7] exactly for this purpose. Indeed, it is
easy to check that for any input in {x ∈ Fnq |wt(x) = ω},
this transformation outputs a vector with uniform distribution
in {x ∈ Fnq |wt(x) = ω} given that (uniformly chosen) γ
and Σ are unknown. Since transformation Πγ,Σ happens to be
linear as noted in Section II, it can be used directly in the
construction of [25].



Key Generation.
Input: Given a security parameter and q, choose n, k, and ω,
then compute:
H

$←− F(n−k)×n
q , e $←− Fnq such that wt(e) = ω, and y ← HeT .

Output: the private key sk, and the public key (identification)
pk: (sk,pk) = (e, (y,H, ω)).

Technically, our protocol is an interactive zero-knowledge
proof of knowledge [12] for the predcate:

P(sk, pk) = “With respect to pk, e is such that

y = HeT and wt(e) = ω”,

where pk is a common data, and sk is a witness.
Our protocol is presented in Table I. It has soundness error

2/3, which can be reduced to (2/3)δ by iterating this protocol
independently for δ rounds.

IV. SECURITY PROOF

Our proof uses the approach presented in [25], [28]. We also
follow [19] by presenting our proof in the standard model.

Let us denote the cheating prover by P̃ and a cheating
verifier by Ṽ .

Proposition 1. The protocol in Table I is an interactive zero-
knowldge proof of the predicate P(sk, pk), in the standard
model.

Proof:
Completeness: If P knows the witness, it is easy to show that
she can answer each challenge correctly, in particular one will
need to use the fact that the transformation Πγ,Σ is linear and
that it preserves the weight.

Soundness:

Lemma 1. If V accepts P̃ ’s proof with probability at least(
2
3

)r
+ ε, then there exists a PPT algorithm which with

overwhelming probability computes the witness e.

Proof: Let T be an execution tree of the protocol be-
tween P̃ and V that corresponds to all possible challenges
by V . Verifier V can send 3 possible challenges in each
round. Suppose that the binding property of the underlying
commitment scheme holds. Then, we present a PPT algorithm
(called witness extractor) that computes the witness e from a
vertex with 3 descendants.

Suppose there exists a vertex with 3 descendants. This
implies that all the three challenges were correctly answered.
Suppose now that the following responses were provied by P̃ :

• b = 0 : (u0, γ0,Σ0),
• b = 1 : (w1, γ1,Σ1) (w1 corresponds to u+ e),
• b = 2 : (z2, t2) (correspond to Πγ,Σ(u) and Πγ,Σ(e),
respectively).

Now, according to the checks perfomed by V , we have :
(γ0,Σ0, Hu

T
0 ) = Open(c1) = (γ1,Σ1, Hw

T
1 −y). Remember

that the binding property is assumed to hold, then we have
γ0 = γ1, Σ0 = Σ1, and HuT0 = HwT1 − y. Using

correctness of c2 and c3, we also have z2 = Πγ0,Σ0
(u0),

z2 + t2 = Πγ1,Σ1(w1), and wt(t2) = ω. This implies
t2 = (t2+z2)−z2 = Πγ0,Σ0(w1−u0) where wt(w1−u0) = ω.
Therefore, the expression H(w1 − u0)T = HwT1 −HuT0 = y
shows that w1 − y0 is a valid witness.

The rest of the proof of this lemma is exactly as in [28].
The omitted part shows that the probability for T to have a
vertex with 3 descendants is at least ε.
Zero-knowledge: This property states that the cheating
polynomial-time verifier Ṽ learns no information on the wit-
ness irrespective of her cheating strategy.

Lemma 2. Protocol in Table I is zero-knowledge if the used
commitment scheme is hiding.

Proof: The flavor of zero-knowledge – computational or
statistical – depends on the corresponding flavor of the hiding
property of the underlying commitment scheme.

Next, we present a PPT algorithm called the simulator
which works in expected polynomial time, and which con-
structs a protocol transcript whose distribution is indistinguish-
able from the transcript of the protocol execution between
honest P and V .

Since the zero-knowledge property must hold irrespective
of Ṽ ’s strategy, we denote this strategy by St(c1, c2, c3), and
assume that the challenges are chosen according to it. The
simulator works as follows:

1) Pick a challenge b $← {0, 1, 2}.
• If b = 0, choose u

$← Fnq , γ $← (F∗q)n, Σ
$← Sn,

compute c1 = Com(γ,Σ, HuT ), c2 = Com(Πγ,Σ(u)),
c3 = Com(0), and Response = (u, γ,Σ).
It is easy to check that the distributions of c1, c2,
c3 and Response are identical to the corresponding
distributions in the actual protocol transcript.
• If b = 1, choose u $← Fnq , γ $← (F∗q)n, Σ

$← Sn, and
w = u+ z, where z ∈ Fnq is such that HzT = y, z 6= e,
wt(z) 6= ω. Then, compute c1 = Com(γ,Σ, HuT ),
c2 = Com(0), C3 = Com(Πγ,Σ(w)), and Response =
(w, γ,Σ). Again, it is easy to check that the values
in Response are consistent with the checks, and also
that distributions of the commitments and Response
are identical to those in the actual protocol transcript.
In particular, a uniform u serves as a one-time pad for
z.
• If b = 2, choose u

$← Fnq , γ $← (F∗q)n, Σ
$← Sn,

and z
$← {x ∈ Fnq |wt(x) = ω}. Then, compute c1 =

Com(0), c2 = Com(Πγ,Σ(u)), c3 = Com(Πγ,Σ(u +
z)), and Response = (Πγ,Σ(u),Πγ,Σ(z)). The values
in Response are consistent with the checks, and it is
easy to see that distributions of the commitments and
Response are identical to those in the actual transcript.

2) The simulator computes b′ = St(c1, c2, c3).
3) If b = b′, then the simulator outputs a transcript which

includes H , b and Response, otherwise go to Step 1.
Now, in 3δ iterations on the average, the above algorithm

constructs the protocol transcript which is indistinguishable



TABLE I
OUR IDENTIFICATION PROTOCOL.

Prover P Verifier V

(sk, pk) = (e, (y,H, ω)) pk = (y,H, ω)

u
$←− Fnq

Σ
$←− Sn, γ $←− (F∗

q)n

c1 = Com(γ,Σ, HuT )

c2 = Com(Πγ,Σ(u))

c3 = Com(Πγ,Σ(u+ e))

c1, c2, c3

−−−−−→
b

←−−−−−
b

$←− {0, 1, 2}

If b = 0
u, γ,Σ

−−−−−→
P opens c1 and c2, V checks correctness of c1, c2,
using H which is public.

If b = 1
u+ e, γ,Σ

−−−−−→
P opens c1 and c3, V checks correctness using
HuT = H(u+ e)T − y.

If b = 2
Πγ,Σ(u),Πγ,Σ(e)

−−−−−→
P opens c2 and c3, and checks correctness using
Πγ,Σ(u) + Πγ,Σ(e) = Πγ,Σ(u+ e), and checks that
wt(Πγ,Σ(e)) = ω.

from the transcript of the protocol execution between the
honest parties.

Now, Lemmas 1 and 2 conclude the proof of Proposition 1.

V. PERFORMANCE EVALUATION

For simplicity of our calculations, we assume that commit-
ments are implemented using random oracles, in the same way
as it is done in [25], [7]. Then the commitment function will be
computed as some cryptographic hash function h with output
size lh = 160 bits. When checking the prover’s responses, the
verifier will simply check that the output of the hash functions
on the values contained in the response are the same as those
sent as commitments. For instance, when b = 0, the verifier
will check if h(γ,Σ, HuT ) = c1 and h(Πγ,Σ(u)) = c2.

We will assume that the values u and (γ,Σ) are computed
using pseudorandom generators (PRG) with seed of length
ls = 128 bits. Hereby, only the seeds can be sent to save on
communication, in the same way, as it is done in [25], [7].

The syndrome decoding problem is hardest to solve when
k ≈ n/2 [6] and ω is chosen slightly below the Gilbert-
Varshamov bound (see Section II). We take k = n/2, and
hereby we only need to choose n (as an even integer).

In order to compute the recommended parameters for a
given security level, we will use the currently best algorithm
for solving q-ary Syndrome Decoding problem that is the
Information Set Decoding algorithm by Peters [22]. Since
the equations for its parameters do not have a short analytic
representation, we use the C program introduced by Peters,
which is available at https://bitbucket.org/cbcrypto/isdfq/src.

We let N be the number of bits needed to represent
an element of Fq , and we set N = dlog2 qe. Let δ be the

number of rounds. We assume that the common matrix H is
in the systematic form.

Our scheme has the following parameters.
Size of the common matrix: k2N .
Size of the public identification: kN .
Size of the secret key: nN .

In fact, the above parameters are the same as in CVA
scheme.

Total communication cost, in bits:
δ
(
3lh + 2 + (3ls + 3nN)/3

)
.

Prover’s computation complexity over Fq , per round:
(k2 + n+ ω) multiplications and (k2 + 2ω) additions.

Concerning calculation of the communication cost, we note
that the above values are the average assuming that the
challenges are made uniformly at random.

Cayrel et al [7] offer the following estimate for the com-
munication cost of their protocol:

δ(2lh +N + nN + 1 + (lγ + lΣ + nN)/2),

where lγ = lΣ = ls is the length of a seeds of some PRG used
to obtain γ and Σ. For a fair comparison with our scheme, we
assume that (γ,Σ) are generated from a single seed in their
scheme.

Next, we provide recommended parameters for the equiv-
alent security level of 80 bits and soundness error 2−16 –
to satisfy the later requirement our scheme needs 28 rounds
(independently of q). Our recommended parameters for q = 3,
along with the corresponding parameters for Cayrel et al
scheme for comparison, are presented in Table V. In this case,
our scheme requires 4.79 kilobytes of communication cost
that is by 36% smaller than the communication cost of CVA
scheme being 7.50 kilobytes; besides their scheme requires



TABLE II
PERFORMANCE COMPARISON OF OUR PROPOSAL AND CVA SCHEME FOR q = 3.

q = 3, n = 396, k = 198, ω = 62 CVA [7] Our Proposal

Number of Rounds 39 28

Matrix size (kilobytes) 9.57 9.57

Public key (bits) 396 396

Secret key (bits) 792 792

Communication (kilobytes) 7.50 4.79

Prover’s Computation over F3
220.58 multiplications,

220.54 additions
220.08 multiplications,

220.07 additions

TABLE III
PERFORMANCE COMPARISON OF OUR PROPOSAL AND CVA SCHEME FOR q = 4.

q = 4, n = 328, k = 164, w = 61 CVA [7] Our Proposal

Number of Rounds 28 28

Matrix size (kilobytes) 6.57 6.57

Public key (bits) 328 328

Secret key (bits) 656 656

Communication (kilobytes) 4.69 4.33

Prover’s Computation over F4
219.56 multiplications,

219.53 additions
219.54 multiplications,

219.53 additions

TABLE IV
PERFORMANCE COMPARISON OF OUR PROPOSAL AND CVA SCHEME FOR q = 5.

q = 5, n = 292, k = 146, w = 60 CVA [7] Our Proposal

Number of Rounds 24 28

Matrix size (kilobytes) 7.81 7.81

Public key (bits) 438 438

Secret key (bits) 876 876

Communication (kilobytes) 4.99 5.08

Prover’s Computation over F5
219.01 multiplications,

218.97 additions
219.21 multiplications,

219.20 additions

39 rounds. When q = 4 (see Table III), our scheme requires
4.33 kilobytes of communication that is by 8% smaller than
4.69 kilobytes of communication required for CVA scheme;
the number of rounds is 28 in both protocols. For q = 5,
the performance evaluation results are given in Table IV.
Now, our scheme requires 5.08 kilobytes of communication, as
compared to 24 rounds and 4.99 kilobytes with CVA, which is
by 2% smaller than with ours. For q > 5, the CVA scheme is
superior to our scheme in terms of communication cost, since
the soundness error of their scheme approaches 1/2, when q
is growing. We note that the complexity of Information Set
Decoding is growing when q increases, hence larger q require
smaller n for the same security level.

VI. CONCLUSION

In this paper, we presented a zero-knowledge identification
scheme based on q-ary syndrome decoding with soundness
error 2/3, which is a generalization of (binary) Stern scheme
to q-ary case. Our scheme is superior to the CVA scheme [7]
in terms of communication cost, but only for q = {3, 4}.

An open question is to reduce the soundness error to exactly

1/2 in the case of small q, most importantly for q = 2, since
a scheme working over the binary field is expected to have a
fast implementation. Reducing the size of the public matrix is
another natural open question.

ACKNOWLEDGMENTS

The authors would like to thank Pierre-Louis Cayrel and
Sidi Mohamed El Yousfi Alaoui for their valuable comments.

The authors would like to thank the anonymous reviewers
of AsiaJCIS 2013 for pointing out some errata.

The first author was supported by China Scholarship Coun-
cil (CSC). The second author was supported by a kakenhi
Grant-in-Aid for Young Scientists (B) 24700013 from Japan
Society for the Promotion of Science.

REFERENCES

[1] A. Barg, Complexity issues in coding theory. In V. S. Pless and W. C.
Huffman, editors, Handbook of Coding theory, volume I, chapter 7, pages
649C754. North-Holland, 1998.

[2] A. Becker, A. Joux, A. May, and A. Meurer, Decoding Random Binary
Linear Codes in 2n/20: How 1 + 1 = 0 Improves Information Set
Decoding. EUROCRYPT 2012: 520-536.



[3] M. Bellare, and P. Rogaway, Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. ACM Conference on Computer and
Communications Security 1993: 62-73.

[4] D.J. Bernstein, T. Lange, and C. Peters, Wild McEliece. Selected Areas
in Cryptography 2010: 143-158.

[5] E. Berlekamp, R. McEliece, and H. van Tilborg, On the inherent in-
tractability of certain coding problems, IEEE Trans. on Inf. Theory 24,
1978: 384-386.

[6] A. Canteaut, and F. Chabaud, A new algorithm for finding minimum-
weight words in a linear code: application to primitive narrow-sense BCH-
codes of length 511. IEEE Transactions on Information Theory 44, 1998:
367-378.
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