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Abstract

In a recent paper at Asiacrypt’2012, Jain et al point out that Véron code-based identification
scheme is not perfect zero-knowledge. In particular, this creates a gap in security arguments
of proof of plaintext knowledge (PPK) and verifiable encryption for the McEliece public key
encryption (PKE) proposed by Morozov and Takagi at ACISP’2012. We fix the latter result by
showing that PPK for the code-based Niederreiter and McEliece PKE’s can be constructed using
Stern zero-knowledge identification scheme, which is unaffected by the above mentioned problem.
Since code-based verifiable encryption uses PPK as a main ingredient, our proposal presents a fix
for the McEliece verifiable encryption as well. In addition, we present the Niederreiter verifiable
encryption.

1 Introduction

Postquantum cryptography encompasses schemes which remain secure even against attacks using
quantum computers. Two important candidates for the postquantum public key encryption are
code-based public key encryption (PKE) schemes by McEliece [25] and Niederreiter [27]. Their
security is based on hardness of decoding, which is a well-studied cryptographic assumption
[7, 31, 15, 8, 17, 9, 3].

It is important to develop code-based cryptographic protocols in order to introduce a wide
spectrum of secure services which cryptography can offer. Quite a few of such protocol already
exists such as identification or digital signatures — see [15, 12] for surveys, and also [29] for related
results.

In this paper, we focus on proof of plaintext knowledge (PPK) for code-based PKE. Suppose
that a prover P encrypted the plaintext m into ciphertext ¢ on the public key pk. Now, PPK
allows P to convince a verifier V, who does not have the secret key, that P knows m. We consider
zero-knowledge (ZK) proofs which means that PPK does not leak any information on m to V.

Verifiable encryption with respect to some binary relation R on the plaintexts is a zero-
knowledge proof on public inputs pk, ¢, and § that allows a prover P to convince a verifier V that
c is a ciphertext of m under pk such that (m,d) € R.

1.1 Related Works

Proof of Plaintext Knowledge. PPK were first introduced by Aumann and Rabin [1] in
the generic case of any PKE, and then investigated by Katz [22], who presented efficient PPK
for RSA, Rabin, ElGamal and Paillier cryptosystems using Sigma-protocols. The first PPK in
postquantum setting for the lattice-based Ajtai-Dwork PKE was presented by Goldwasser and
Kharchenko [20], and then a number of works for lattice-based systems followed [36, 37, 5]. It is
worth noting that the works by Xagawa et al [36] and Xagawa and Tanaka [37] use a modification
of Stern code-based ZK identification scheme [34]. The latter scheme was also used by Kobara
et al [23] for a similar purpose in code-based oblivious transfer.

Recently, Morozov and Takagi [26] presented PPK and verifiable encryption for the McEliece
PKE using code-based Véron identification scheme [35], which is, in a sense, the dual of Stern
scheme [34]. However, Jain et al [21] pointed out a gap in the proof of zero-knowledge property
of Véron’s scheme. This also created a gap in the proofs of both primitives in [26].
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It is also worth noting that Jain et al [21] presented efficient commitments and ZK proofs based

on a variant of the learning parity with noise (LPN) problem (for details about this problem, see
e.g. [29]).
Verifiable Encryption. Verifiable encryption was first introduced by Stadler [33] as a tool for
publicly verifiable secret sharing, and later generalized by Asokan et al [2] and applied to fair
exchange of digital signatures. See the works by Camenisch and Damgard [10] and by Camenisch
and Shoup [11] for further developments on this topic. Verifiable encryption for Ajtai-Dwork
PKE was presented in [20].

1.2 Our Contribution and Discussion

In this work, we show that the basic idea presented in [26] is valid by introducing a (zero-
knowledge) PPK for Niederreiter and McEliece PKE using Stern ZK identification scheme [34].
We suggest secure parameter sets and estimate the performance of our proposal. In particular,
for 80-bit equivalent security, our protocol requires 9.1 kilobytes of communication, in 28 rounds,
which seems to be practical.

One can imagine various applications, where the receiver of the ciphertext might want to
ensure in advance that the sender knows the plaintext inside it. For instance, in case of an
auction, when the encrypted bid is sent, an adversary might intercept it and re-send it on his
own behalf, in attempt to bring the auction to a draw. Clearly, deployment of PPK would prevent
the above attack. One might argue that an authentication mechanism such as digital signature
might be a cheaper solution, however it depends on a particular application, since PPK does not
bind the bidder to the bid. Therefore, the interactive nature of PPK would allow the bidder to
authenticate the bid, but deny it later for privacy reasons.

It is worth noting that our result implies interactive code-based IND-CCA1 PKE in the
standard model [18, 19, 22].

Throughout our work, we assume the presence of the public key infrastructure (or any other
key authentication mechanism), which ensures validity of receiver’s public key to be used in PPK.

As in [26], our protocol works also in the standard model, as any commitment scheme can
be used. In particular, one may use (efficient) computationally hiding and statistically binding
commitment scheme based on hardness of syndrome decoding from [14] or [21].

The type of zero-knowledge which we obtain, being statistical or computational, depends
solely on the employed commitment scheme. In case of [14, 21|, which are perfectly binding and
computationally hiding, the ZK property holds in computational sense.

2 Preliminaries

We borrow some parts of the presentation in this section from [26].

Let us first fix some notation. Let J be an ordered subset as follows: {ji,...,jm} = J C
{1,...,n}, then we denote a vector (z;,,...,z;,,) € F5* by x;. Similarly, we denote by M the
submatrix of a (k X n) matrix M consisting of the columns which correspond to the indexes of J.
A concatenation of matrices X € FE*™ and Y € FEX™ is written as (X|Y) € F5*("0F"1) and

for k = 1 this will denote concatenation of vectors. We denote by z Exa uniformly random
selection of an element from its domain X. A set of (n X n) permutation matrices is denoted by
Sn.

We denote by (A(a), B(b))(c) a random variable representing the output of a Turing machine
B following an execution of an interactive two-party protocol between a Turing machine A with
private input a and a Turing machine B with private input b on a joint input ¢, where A and
B have uniformly distributed random tapes. If a party, say A, has no input, then we omit it by
writing just A (instead of A(a)) in the above notation.

In our two-party protocols, we will denote an honest prover by P and an honest verifier by V,
while a dishonest party will be denoted by P and V, respectively.

We call a function €(n) negligible in some parameter n, if e(n) = 2~ . We call a proba-
bility 1 — €(n) overwhelming, when e(n) is negligible. Occasionally, we may omit mentioning of
the security parameter. In these cases, by saying that a quantity is negligible (overwhelming),
we mean that it is negligible (overwhelming) in the security parameter. The Hamming weight of
x € Fy is denoted as wg ().

w(logn)



2.1 Security Assumptions

Definition 1. Syndrome Decoding (SD) Problem.
Input: H & FO™% 0y & FrF and 0 <t e N.
Output: s € F} such that wy(s) <t, HsT =y.

This problem was shown to be NP-complete by Berlekamp et al [7]. Its equivalent dual version
can be formulated as follows.

Definition 2. General Decoding (G-SD) Problem.
Input: G & FA*m gy & F5 and 0 <t e N.
Output: © € F5, e € FY s.t. wu(e) <t, 2GDe=1y.

The following three problems use the quantities defined in the next subsection. No polynomial-
time algorithm is known for these problems [15, 17, 9].

Definition 3. Niederreiter Problem.

Input: A public key of Niederreiter cryptosystem (HP",t), where HP"® € anik)xn, 0<teN;
and a Niederreiter ciphertext ¢ € Fy.

Output: m € F§ such that dg(H, M, P,s) = e.

Definition 4. McFEliece Problem.

Input: A public key of McEliece cryptosystem (GF“?,t),

where GP** € F5*™ 0 < t € N; and a McEliece ciphertext ¢ € Fy.

Output: m € F5 such that dﬂr(mG”“b7 c) =t.

Definition 5. Goppa Code Distinguishing Problem.
Input: H € FS"~H"™,

Decide: If H is a parity check matriz of an (n, k) irreducible Goppa code, or of a random (n,k)-
code?

2.2 Niederreiter Cryptosystem

For a survey on the material presented in this and in the next subsections, we refer the reader to
the paper by Engelbert et al [15].
The Niederreiter PKE consists of the following triplet of algorithms (K, £, D) with system

parameters n,t € N:
e Key generation algorithm K: On input n, t, generate the following matrices:
—He ]Fg"ik)xn — the parity check matrix of an irreducible binary Goppa code which can correct
up to t errors. Its decoding algorithm is denoted as Decy,.

— M e F§"™M>*(=F) _ 4 random non-singular matrix.

— P e F3*" — a random permutation matrix.

— HP" = MHP e F{" 9",

Output the public key pk = (HP"?,t) and the secret key sk = (M, H, P, Decy).
e Encryption algorithm £: On input a plaintext m € F5 such that wg(m) = ¢, and the public
key pk, output the ciphertext ¢ = HP"*m?.
e Decryption algorithm D: On input a ciphertext ¢ and the secret key sk, calculate:
— M7 l'c=(HP)m”.
— Since (HP)m™ = H(PmT), use the syndrome decoding algorithm Decs; to recover Pm”.
—Output m¥ = P~1Pm7.

It is easy to check correctness of the decryption algorithm: After in the first step of decryption,
we obtain a syndrome of the permuted plaintext Pm”. Since the the decoding algorithm Decy
is known, it is easy to recover the plaintext.

We note that the plaintext space of Niederreiter PKE is the set of weight-¢ binary vectors.
For representation of arbitrary binary vectors (of an appropriate length) as valid plaintexts, see
the work by Cover [13] and its improvements by Sendrier [32].

2.3 McEliece Cryptosystem

The McEliece PKE consists of the following triplet of algorithms (I, £, D) with system parameters
n,t € N:
e Key generation algorithm K: On input n, ¢, generate the following matrices:

- Ge IFSX" — the generator matrix of an irreducible binary Goppa code correcting up to ¢
errors. Its decoding algorithm is denoted as Decg.



— S € F5** — a random non-singular matrix.
— P e F3*" — a random permutation matrix (of size n).
— GPY = SGP € FExm,
Output the public key pk = (GP“?,t) and the secret key sk = (S, G, P, Decg).
e Encryption algorithm £: On input a plaintext m € F5 and the public key pk, choose a vector
e € 3 of weight ¢ at random, and output the ciphertext ¢ = mGP*® @ e.
e Decryption algorithm D: On input ¢ and the secret key sk, calculate:
—cP ' =mSG®eP .
— mSG = Decg(cP™!).
— Let J C{1,...,n} be s.t. G is invertible.
Output m = (mSG);(Gs)~tS™1.
It is easy to check that the decryption algorithm correctly recovers the plaintext: Since in
the first step of decryption, the permuted error vector eP~! is again of weight ¢, the decoding
algorithm Decg successfully corrects these errors in the next step.

2.4 Proof of Plaintext Knowledge

We use the definition of [22]. For a PKE scheme (K, &, D), denote by ¢ = Epi(m; R) a ciphertext
of a plaintext m under public key pk using randomness R. We will call (m, R) a witness to the
decryption of ¢ under pk. Informally, in a PPK protocol, a sender P proves to a receiver V the
knowledge of a witness to the decryption for some ciphertext ¢ under the known public key pk.

Definition 6. Let II = (P,V) be a tuple of PPT algorithms. 11 is a proof of plaintext knowledge
for encryption scheme (K, E, D) if the following conditions hold:

(Completeness) For all pk output by K(1™) and all ¢ with witness w to the decryption of ¢
under pk, we have that (P(w),V)(pk,c) =1. (When V outputs 1 we say it accepts.)
(Soundness) For all pk output by K(1™), all ¢ produced under pk, and for any P, we have that
Pr[(P,V)(pk, c) = 1] is negligible.

(Zero-knowledge) There exists a PPT Turing machine SIM (called a simulator) such that,
for all pk output by K(1™), all PPT \7, and all w, the following distributions are indistinguishable:

{c = Em(m; R) : (P(w), V) (pk, 0)},

{c = Er(m; R) : (STM,V)(pk, c)},

in case of statistical, respectively computational indistinguishability, we call the property statis-
tical, respectively computational zero-knowledge (ZK).

3 PPK for Niederreiter PKE

We construct the proof of plaintext knowledge for Niederreiter encryption using Stern ZK iden-
tification scheme [34]. We take the Niederreiter public key, i.e. a permuted and scrambled
parity-check matrix of an irreducible binary Goppa code correcting up to t errors as common
data. The plaintext is used as witness and the ciphertext is used as public identification. Since
the Niederreiter PKE is deterministic, we consider the string R representing randomness in Def-
inition 6 as empty.

We observe that the security proof of Stern’s scheme [34] does not use the fact the common
code is random. Of importance are only the facts that it has a particular minimum distance,
which is provided by construction of the Niederreiter public key, and that the decoding problem
for it is hard. The latter is ensured by the hardness of Niederreiter Problem (see Section 2.1)
which we assume to hold.

Witness: m € F3, wg(m) = t, where the parameters n and ¢ are described in Section 2.2.

Common data: (HP*" t) s.t. HP* ¢ anik)xn — the Niederreiter public key, and ¢ = HP**mT
— the Niederreiter ciphertext.

Protocol 1 (Niederreiter PPK).

1. P computes y ﬁ F3 and 7 <i S, and sends three commitments:
~ C1 = Com(m, HP"byT),
- Cy = Com(ym),
- Cs = Com((y + m)m).

2.V sends b & {0,1,2}.



3. V performs the following checks and rejects,
if any check fails:
-Ifb=0,
— P sends y, m and opens C; and Cs.
—V directly checks validity of the opened values.
-Ifb=1,
— P sends y + m, 7w and opens C; and Cs.
— V checks validity by computing the following:
HPyT = PP (y +m)T + ¢, and then verifying that the opening of C; is (w, HP**yT +¢),
and that the opening of C3 is (y + m)m.
~-Ifb=2,
— P sends ym, mm and opens Cs and Cs.
—V checks validity of opened values by verifying that C2 opens to ym, Cs opens to ym+m,
and that wg(mm) = t.

Denote a protocol consisting of r independent iterations of Protocol 1 by PPK(H”“b, c;m),
with some appropriately chosen 7.

Theorem 1. Protocol PPK(HP"®, c;m) is a proof of plaintext knowledge for the Niederreiter
public key encryption according to Definition 6 assuming hardness of Niederreiter Problem, in
the standard model.

Proof. We generally follow the proof of [34], but for the proof of soundness we use the argument
from [35], since it is shorter?.

Completeness. It is easy to check that P who knows the plaintext can answer all of three
challenges correctly. This implies that (P(w),V)(pk,c) = 1.

Soundness.

Lemma 1. If V accepts P’s proof with probability at least (%)T + €, then there exists a PPT
algorithm W E which, with overwhelming probability, computes a witness m.

The proof will appear in the full version of this paper. We only note that the machine
WE, constructed in the proof, finds a valid witness, hereby contradicting the hardness of the
Niederreiter problem, unless the binding property of the commitment is violated. Therefore, for
a cheating prover P, we must have Pr[(P,V)(pk,c) = 1] < (2/3)" +¢, which is negligible in n and
.

We emphasize that the proof does not require any additional assumptions on the Niederreiter
public key (such as for instance, its indistinguishability from a random matrix), except for those
made in the statement of the Niederreiter problem.

Zero-knowledge. This property guarantees that the execution of the protocol does not leak any
information (in computational, or in statistical sense) to the cheating polynomial-time verifier V,
who might decide on an arbitrary strategy for choosing her challenges.

Lemma 2. Protocol 1 is computational (respectively statistical) zero-knowledge according to Defi-
nition 6, if the used commitment scheme is computationally (respectively unconditionally) hiding.

The proof will appear in the full version of this paper.
The above two lemmas now conclude the proof of Theorem 1. O

4 Performance Evaluation

In this section, we estimate security and performance of the proposed scheme. We chose the
parameters of the Niederreiter scheme according to the estimation by Peters [30] for the running
time of the information set decoding algorithm. We first choose the code length n (as a power
of 2, for convenience) and k = n — tlog,n (again for convenience), then we find the smallest
value of ¢ which provides us with 80 or 128 bits of equivalent security. We fix the soundness
failure probability in our PPK to be at most 276, since this value is a minimal requirement
in the ISO/IEC-9798-5 standard for the zero-knowledge techniques for entity authentication.
Remembering that the soundness failure probability is 2/3 in each round, we will need 28 rounds
in total.

We consider the original Niederreiter public key encryption, with binary irreducible Goppa
codes used for generation of public keys, without any optimizations. Then, the size of the public
key is (n — k)n bits, the ciphertext size is n bits.

IRemember that the gap in the proof of [35] pointed out in [21] concerned only the proof of zero-knowledge property.



Equivalent security (bits) 80 128
Code length n 2048 4096
Code dimension k 1806 3676
Weight of error vector ¢ 22 35

Public key size (Kbytes) 62.3 | 132.3
Communication (Kbytes) 9.1 16.1
Prover’s computation (operations over Fo) | 22473 | 226.52

Table 1: Parameters and Performance of the Proposed PPK Protocol.

In order to keep estimation simple, we assume the random oracle model, and construct com-
mitments using idealized hash functions h : {0,1}* — {0,1}, taking I, = 160. In order to
commit to a value z (we will think of a binary representation of x), P will simply compute h(z).
Then, V’s checks in our protocol will be performed as in [34] by computing the corresponding
hash values. For instance, we will compute C; = h(m, H?**y7), and when b = 0, V will use the
values 7 and HP"?yT received from P to compute h(mw, H?*’y™) and check that it is equal to C;
received in Step 1.

We assume that the representations of y and 7, respectively, are generated using pseudoran-
dom generators with seed length [, = 128. Sending seeds instead of actual values will allows us
to save on communication.

The expected communication cost of our protocol is:

r(3le + 2+ (3ls + 3n)/3).

we call it “expected” because in the thirm term, we average over the sizes of responses to the
challenge b.

Prover’s expected amount of computation, which is also an upper bound on that amount for
the verifier, is as follows:

r((2n — 1)(n — k) + n) binary operations.

This is just a rough estimate of the total computation cost, since the costs of computing permu-
tations, commitments, and pseudorandom generation — which are implementation-specific — are
not included.

Our proposed recommended parameters and the resulting costs are summarized in Table 1.

We can see that the communication cost of the proposed protocol appears to be within the
practical feasibility range. For instance, for the equivalent 80 bit security, it is 9.1 kilobytes. For
comparison, it is 6.9 times smaller than the (non-optimized) public key size of the Niederreiter
PKE, which is equal to 62.3 kilobytes for the relevant parameters.

5 PPK for McEliece PKE

One natural way to construct the proof of plaintext knowledge for the McEliece PKE [25] would
be to replace the flawed Véron ZK identification scheme [35] with the ZK proofs of Jain et al [21]
in the construction of [26].

A potential problem is that the scheme of [21] is based of a variant of LPN problem. This, in
turn, will require us to make an additional Goppa Code Distinguishing assumption (see Sec. 2.1)
on pseudorandomness of the McEliece public key. Although this assumption has not yet been
disproved directly, a distinguisher for high rate Goppa codes was presented by Faugere et al
in [16]. Therefore, we prefer to avoid this assumption whenever possible — in particular, when
constructing our PPK.2

Our approach is to use the equivalence between McEliece and Niederreiter PKE’s observed
by Li et al [24]. In order to construct PPK for the McEliece ciphertext, one will first compute an
“equivalent” plaintext, along with an “equivalent” public key of the Niederreiter PKE, and then
use Protocol 1. In fact the equivalent public key may be pre-computed and distributed the same
way as the original McEliece public key, since the equivalence is easy to verify.

2 At the same time, we admit that deployment of the ZK proofs of [21] seems to be a prospective way for enhancing
the code-based verifiable encryption of [26].
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In details, suppose that the McEliece ciphertext is ¢ = mGP"” + e, where m, GP*” and e are
computed as described in Section 2.3. Let the equivalent Niederreiter public key HP*® be chosen
a basis of the kernel of GP*? i.e.

HP (G <0, M

where 0 is the zero-vector of the appropriate length. In other words, HP“® is a parity check
matrix of the linear code generated by GP**. The equivalent Niederreiter ciphertext ¢y is com-
puted as a syndrome of the ciphertext ¢, using HP"® as a parity check matrix: ¢y = HP*cT =
HP (mGP)T 4 grubeT = grebeT

Let us now briefly argue that our proposal indeed works. First of all, it is easy to check that
HP"® is chosen a basis of the kernel of GP*? since Equation (1) and the ranks of these matrices
are easy to verify. Then, note that multiplication of HP*? by (¢/)T, where ¢’ is an arbitrary n-bit
vector, will phase out any codewords of the code generated by GP*® from ¢’. Now the obtained
expression is of the form HP**(e/)T, ' = ¢’ + mGP*® for some m € F5. If wi(e’) = t, then ¢ is
a valid McEliece ciphertext, but also €’ is a valid witness for Protocol 1. Otherwise, ¢’ is not a
valid McEliece ciphertext, but also €’ is not a valid witness, and a prover must fail the PPK by
Theorem 1.

Note that so far we only explained that Protocol 1 works as a ZK proof of validity for the
McEliece PKE. However, the prover, who knows an error vector of appropriate weight, can
compute the plaintext simply by solving an overdefined system of linear equations as ¢ + e =
mGP? | where GP*? is public. Therefore, this is also a proof of plaintext knowledge.

In Definition 6, we would consider the string m representing the plaintext as empty.

Trivially, the same PPK will work for the IND-CPA variant of the McEliece PKE [28], where
the plaintext is padded with uniform randomness.

6 Verifiable Encryption

Informally, verifiable encryption with respect to some binary relation R on the plaintexts is a ZK
proof on public inputs pk, ¢, and § that allows P to convince V that c is a ciphertext of m under
pk such that (m,d) € R. The simplest example is the equality relation Req = {(m,m’)|m = m'},
i.e. that a given ciphertext c is an encryption of a given plaintext m under public key pk. We
refer the reader to [26] and references therein for a formal definition and related results.

The work [26] presents the McEliece verifiable encryption with respect to the equality relation.
In other words, P convinces V that a given message m is contained in the Randomized McEliece
encryption, see Section 2.3 for description.

Informally, their protocol works as follows: First, P runs PPK on the input ciphertext
¢ = (rlm)GP* + e = rGE"* + mGP"* + e, where (GP**)T = ((Gg“b)T|(Gf“b)T), Ghb ¢ Fhoxn
and G’fub € F;lxn are the sub-matrices of GP*® corresponding to randomness and plaintext,
respectively. Secondly, both players compute ¢ = ¢ + mGP"** = rGE"? + e, hereby canceling out
the plaintext, and then run PPK with ¢’ as ciphertext and Gg”b as public key.

Now, we can see that Protocol 1 can be used as PPK in the above construction. Hereby, we
fix the McEliece verifiable encryption scheme of [26].

It was noted in [26], that although the resulting PPK is zero-knowledge, the fact that V learns
m (together with the fact that c is a valid McEliece ciphertext) implies that V can now produce
a valid encryption ¢, = rGg“b +e+ maG{’“b for an arbitrary m, € F5. Note that although the
Randomized McEliece PKE is clearly malleable, the above attack is not feasible for % prior to
the protocol execution. This is not a problem of the protocol, but rather the property of the
Randomized McEliece encryption. Therefore, some authentication technique must be applied in
order to avoid this attack.

The construction of Niederreiter verifiable encryption using PPK is similar. We deter its
presentation to the full version of this paper.
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