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Abstract

We present efficient constructions of deterministic encryption (DE) satisfying the new notion – security
against privacy adversary (PRIV security), in the random oracle model. Our work includes: 1) A generic
construction of deterministic length-preserving hybrid encryption, which is an improvement over the paper
by Bellare et al. in Crypto’07; to our best knowledge, this is the first example of length-preserving determin-
istic hybrid encryption (DHE); 2) post-quantum deterministic encryption, using the code-based encryption,
which enjoys a simplified construction since its public key is re-used as a hash function; 3) deterministic
encryption with high message rate from witness-recovering encryption.

Keywords: deterministic encryption, hybrid encryption, code-based encryption, searchable encryption, database
security

1 Introduction

Background. The notion of security against privacy adversary (denoted as PRIV) for deterministic encryption
(DE) was pioneered by Bellare et al [2] featuring an upgrade from the standard one-wayness property. Instead
of not leaking the whole plaintext, the ciphertext was demanded to leak, roughly speaking, no more than the
plaintext statistics does. In other words, the PRIV-security definition (formulated in a manner similar to the
semantic security definition of [8]) requires that a ciphertext must be essentially useless for adversary who is
to compute some predicate on the corresponding plaintext. Achieving PRIV-security demands two important
assumptions: 1) the plaintext space must be large enough and must have a smooth (i.e. high min-entropy)
distribution; 2) the plaintext and the predicate are independent of the public key.

Constructions satisfying two flavors of PRIV-security are presented in [2]: against chosen-plaintext (CPA)
and chosen-ciphertext (CCA) attacks. The following three PRIV-CPA constructions are introduced in the
random oracle (RO) model. The generic Encrypt-with-Hash (EwH) primitive features replacing the coins
used by the randomized encryption scheme with a hash of the public key concatenated with the message.
The RSA deterministic OAEP (RSA-DOAEP) scheme provides us with length-preserving DE. In the generic
Encrypt-and-Hash (EaH) primitive, a “tag” in the form of the plaintext’s hash is attached to the ciphertext of a
randomized encryption scheme.

These results were extended by Boldyreva et al [4] and Bellare et al [3] presenting new extended definitions,
proving relations between them, and introducing, among others, new constructions without random oracles.
Applications. The original motivation for this research comes from the demand on efficiently searchable
encryption (ESE) in the database applications. Length-preserving schemes can also be used for encryption of
legacy code and in the bandwidth-limited systems. Some more applications (although irrelevant to our work)
to improving randomized encryption schemes were studied in [4, Sec. 8].
Motivation. The work [2, Sec. 5] sketches a method for encrypting long messages, but it is less efficient com-
pared to the standard hybrid encryption, besides it is conjectured not to be length-preserving. Also, possible
emerging of quantum computers raises demands for post-quantum DE schemes.
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Our Contribution. In this work, we assume existence of idealized hash functions which behave like random
oracles, i.e. our results are in the random oracle model [5]. We present a generic and efficient construction
of length-preserving deterministic hybrid encryption (DHE). In a nutshell, we prove that the session key can
be computed by concatenating the public key with the first message block and inputting the result into key
derivation function. This is a kind of re-using the (sufficient) entropy of message, and it is secure due to our
assumption that the first block of the message is of high min-entropy and independent of the key. In a sense,
we buy the length preserving property for the price of restricting the plaintext distribution. This assumption is
meaningful in some practical contexts: for instance, in a telephone database, the area code may be fixed, while
the individual number is highly unpredictable.

Compared to our case, Bellare et al. employ the hybrid encryption in a conventional way, which first
encrypts a random session key to further encrypt the data, obviously losing the length-preserving property.
Hence, we show that the claim of Bellare et al [2, Sec. 5]: “However, if using hybrid encryption, RSA-DOAEP
would no longer be length-preserving (since an encrypted symmetric key would need to be included with the
ciphertext)” is overly pessimistic. To our best knowledge, this is the first example of length-preserving hybrid
encryption.

For achieving post-quantum DE, we propose to plug in an IND-CPA secure variant [11] of the coding
theory based (or code-based) McEliece public key encryption (PKE) [10] into the generic constructions EaH
and EwH, presented in [2, Sec. 5]. The McEliece PKE is believed to be resistant to quantum attacks, besides it
has very fast encryption algorithm. Moreover, we point out a significant simplification: the public key (which
is a generating matrix of some linear code) can be re-used as hash function.

In witness-recovering encryption, one decodes from the ciphertext not only the plaintext, but also the
random coin (witness) which is used to generate the ciphertext. We show that such schemes can be used to
construct DE with longer plaintext (as compared to the original schemes). The idea is to have the witness
carry additional information, while preserving security of the scheme. For the same reason as in the DHE
construction, we require that the first block of the message is of high min-entropy and independent of the key.
Related Work. A deterministic hybrid encryption scheme was proposed in the RSA-DOAEP scheme of
[2, Sec. 5]. Our proposal uses the same principle, but we provide a generic construction, which works for
particular message distributions. There are several recent work on DE, such as [3, 4], which prove security in
the standard model (without the help of random oracles). However, their constructions are somewhat inefficient
with the sole exception of the scheme [3, Sec. 8] based on the Decisional Composite Residuosity assumption.
Organization. The paper will be organized in the following way: Section 2 provides the security definitions
for DE. Section 3 gives the proposed generic and efficient construction of DHE, which immediately leads to
the first length-preserving construction. In Section 4, we will provide DE from the code-based PKE, which is
post-quantum secure and efficient due to the good property of the underlying PKE scheme. Next, in Section 5,
on observing that many code-based PKE are also witness-recovering encryption at the same time, we propose
a high message rate DE tailored to it. In Section 6, we briefly discuss how to extend security of our schemes
to the chosen-ciphertext attack (CCA) scenario. Finally, we provide concluding remarks in Section 7.

2 Preliminaries
Denote by “|x|” the cardinality of x. Denote by ~x the vector and by ~x[i] the i-th component of ~x (1 ≤ i ≤ |~x|).
Write ~x||~y for concatenation of vectors ~x and ~y. Let x ←R X denote the operation of picking x from the set X
uniformly at random. Denote by z ← A(x, y, ...) the operation of running algorithm A with input (x, y, ...), to
output z. Write log x as the logarithm with base 2. We also write Pr[A(x) = y : x←R X] the probability that A
outputs y corresponding to input x, which is sampled from X. We say a function ε(k) is negligible, if for any
constant c, there exists k0 ∈ N, such that ε < (1/k)c for any k > k0.

A public key encryption (PKE) scheme Π consists of a triple of algorithms (K ,E,D). The key generation
algorithmK outputs a pair of public and secret keys (pk, sk) taking on input 1k, a security parameter k in unitary
notation. The encryption algorithm E on input pk and a plaintext ~x outputs a ciphertext c. The decryption
algorithm D takes sk and c as input and outputs the plaintext message ~x. We require that for any key pair
(pk, sk) obtained from K , and any plaintext ~x from the plaintext space of Π, ~x← D(sk,E(pk, ~x)).

Definition 2.1 (PRIV [2]) Let a probabilistic polynomial-time (PPT) adversary ADE against the privacy of
the DE scheme Π = (K ,E,D), be a pair of algorithms ADE = (A f ,Ag), where A f ,Ag do not share any
random coins or state. The advantage of adversary is defined as follows,

Advpriv
Π,ADE

(k) = Pr[Exppriv−1
Π,ADE

(k) = 1] − Pr[Exppriv−0
Π,ADE

(k) = 1],
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where experiments are described as:

Exppriv−1
Π,ADE

(k) : Exppriv−0
Π,ADE

(k) :

(pk, sk)←R K(1k) (pk, sk)←R K(1k)
(~x1, t1)←R A f (1k) (~x0, t0)←R A f (1k)

(~x1, t1)←R A f (1k)
c←R E(1k, pk, ~x1) c←R E(1k, pk, ~x0)
g←R Ag(1k, pk, c) g←R Ag(1k, pk, c)
Return 1 if g = t1 Return 1 if g = t1
Else return 0 Else return 0

We say that Π is PRIV secure, if Advpriv
Π,ADE

(k) is negligible, for any PPTADE with high min-entropy, where
ADE has a high min-entropy µ(k) means that µ(k) ∈ ω(log(k)), and Pr[~x[i] = x : (~x, t) ←R Am(1k)] ≤ 2−µ(k)

for all k, all 1 ≤ i ≤ |~x|, and any x ∈ {0, 1}∗.

In the underlying definition, the advantage of privacy adversary could be also written as

Advpriv
Π,ADE

(k) = 2 Pr[Exppriv−b
Π,ADE

(k) = b] − 1

where b ∈ {0, 1} and probability is taken over the choice of all of the random coins in the experiments.
Remarks. 1) The encryption algorithm Π need not be deterministic per se. For example, in a randomized
encryption scheme, the random coins can be fixed in an appropriate way to yield a deterministic scheme (as
explained in Sec. 4);
2) As argued in [2], A f has no access to pk and Ag does not know the chosen plaintext input to encryption
oracle by A f . This is required because the public key itself carries some non-trivial information about the
plaintext if the encryption is deterministic.1 Thus, equipping either A f or Ag with both the public key and
free choice of an input plaintext in the way of conventional indistinguishability notion [8] of PKE, the PRIV
security cannot be achieved.

It is possible to build PRIV security from indistinguishability (IND) security, as observed in [2]. In the
following, we recall the notion of IND security.

Definition 2.2 (IND-CPA) We say a scheme Π = (K ,E,D) is IND-CPA secure, if the advantage Advind
Π,A of

any PPT adversaryA = (A1,A2) is negligible, (let s be the state information ofA1, and b̂ ∈ {0, 1}):

Advind
Π ,A(k) = 2 · Pr


b̂ = b : (pk, sk)←R K(1k),
(x0, x1, s)←R A1(1k, pk),
b←R {0, 1}, c←R E(1k, pk, xb),
b̂←R A2(1k, c, s)

 − 1

Remark. IND security is required by a variety of cryptographic primitives. However, for an efficiently search-
able encryption used in database applications, IND secure encryption may be considered as overkill. For such
a strong encryption, it is not known how to arrange fast (i.e. logarithmic in the database size) search.

IND secure symmetric key encryption (SKE) has been carefully discussed in the literature, such as [7,
Sec.7.2]. Given a key K ∈ {0, 1}k and message m, an encryption algorithm outputs a ciphertext χ. Provided χ
and K, a decryption algorithm outputs the message m uniquely. Note that for a secure SKE, outputs of the en-
cryption algorithm could be considered uniformly distributed in the range, when encrypted under independent
session keys. Besides, IND secure SKE is easy to construct.

Definition 2.3 (IND-CPA SKE) A symmetric key encryption scheme denoted as Λ = (KS K ,ES K ,DS K) with
key space {0, 1}k, is indistinguishable against chosen plaintext attack (IND-CPA) if the advantage of any PPT
adversary B, Advind−cpa

Λ,B
is negligible, where

Advind−cpa
Λ,B

(k) = 2 · Pr

 b̂ = b : K ←R {0, 1}k,
b←R {0, 1},
b̂←R B

LOR(K,·,·,b)(1k)

 − 1,

where a left-or-right oracle LOR(K,M0,M1, b) returns χ←R ES K(K,Mb). Adversary B is allowed to ask LOR
oracle, with two chosen message M0, M1 (M0 , M1, |M0| = |M1|).

1In other words, suppose that in Def. 2.1,A f knows pk. Then,A f can assign t1 to be the ciphertext c, and henceAg always wins the
game (returns 1). Put it differently, although A f and Ag are not allowed to share a state, the knowledge of pk can help them to share it
anyway.
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KH(1k):
(pk, sk)←R K(1k)
Return (pk, sk)

EH(pk, x):
Parses x to x̄||x
ψ←R E(1k, pk, x̄)
K ← H(pk||x̄)
χ←R ES K(K, x)
Return c = ψ||χ

DH(sk, c):
Parse c to ψ||χ
x̄← D(sk, ψ)
K ← H(pk||x̄)
x← DS K(K, χ)
Return x = x̄||x

Table 1: Generic Construction of Deterministic Hybrid Encryption

Hybrid Encryption. In the seminal paper by Cramer and Shoup [7], the idea of hybrid encryption is rigorously
studied. Note that typically, PKE is applied in key distribution process due to its high computational cost, while
SKE is typically used for encrypting massive data flow using a freshly generated key for each new session.
In hybrid encryption, PKE and SKE work in tandem: a randomly generated session key is first encrypted by
PKE, then the plaintext is further encrypted on the session key by SKE. Hybrid encryption is more commonly
used in practice than a sole PKE, since encryption/decryption of the former is substantially faster for long
messages.
Deterministic Hybrid Encryption. A deterministic public-key encryption could be easily extended to the
hybrid scenario, in addition to a SKE. Actually, as [2, Sec.1] argued, a deterministic SKE is easier to define
and achieve, in the left-or-right oracle model, where the challenge messages are distinct. Hence, for obtaining
a secure DHE, we simply require both PKE and SKE to be PRIV secure.

3 Secure Deterministic Hybrid Encryption
In this section, we will present a generic composition of PKE and SKE to obtain DHE. Interestingly, the our
result is quite different from conventional hybrid encryption. In that case, the overhead of communication
cost includes at least the size of the session key, even if we pick the PKE scheme being a (length-preserving)
one-way trapdoor permutation, e.g. RSA.

However, we notice that in the PRIV security definition, both the public key and the plaintext are not
simultaneously known by either A f or Ag. Hence, one can save on generating and encrypting a random
session key. Instead, the secret session key could be extracted from the combination of public key and plaintext
which are available to a legal user contrary to the adversary.

3.1 Generic Composition of PRIV-secure PKE and IND-CPA Symmetric Key
Encryption

Given a PRIV secure PKE scheme Π = (K ,E,D), and an IND-CPA secure SKE scheme Λ = (KS K ,ES K ,DS K),
we can achieve a deterministic hybrid encryption scheme DHE = (KH ,EH ,DH). In the following, H :
{0, 1}∗ 7→ {0, 1}k is a key derivation function (KDF), modeled as a random oracle. In the following section, we
simply write input vector ~x as x with length of |~x| = v. Wlog, parse x = x̄||x, where the |x̄| and |x| is the size (in
bits) of the input domain of Π and Λ, respectively.

Our proposed construction is presented in Table 1.
It is simple, efficient, and can be generically built from any PRIV Π and IND-CPA Λ. Note that the secret

session key must have high min-entropy in order to deny a brute-force attack against Λ. The high min-entropy
requirement should be fulfilled for any PPT privacy adversary to Π since otherwise, PRIV security is not
available, as pointed out in [2]. Thus, we can build a reduction of security of DHE to that of deterministic
PKE.

Requiring x̄ to be of high min-entropy, rules out a trivial attack, which can be described by the following
example. Suppose that a DHE’s input x = x̄||x, where x̄ is fixed to a certain number, say all zero. A f

outputs 0 . . . 0||x and sets t = x. Even though x may have high min-entropy µ(k), adversary Ag can compute
K = H(pk||0 . . . 0), and thus decrypt x from χ with K. Ag can always successfully output g = x, which is
equivalent to t. This attack works since the input x̄ to Π has a very low min-entropy, that, in particular, does
not satisfy the conditions of PRIV security of Π.

As we have explained, for preventing such a trivial attack, we set a high min-entropy requirement of
adversary to PRIV Π. Note, however, that we did not set any restrictions on the x – even a fixed one will yield
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Exppriv−1
DHE,AH

(k): Exppriv−0
DHE,AH

(k):

(pk, sk)←R K(1k) (pk, sk)←R K(1k)
(x1, t1)←R A f (1k) (x0, t0)←R A f (1k)

(x1, t1)←R A f (1k)
Parse x1 to x̄1||x1 Parse x0 to x̄0||x0
ψ←R E(1k, pk, x̄1) ψ′ ←R E(1k, pk, x̄0)
K ← H(pk||x̄1) K′ ← H(pk||x̄0)
χ←R ES K(K, x1) χ′ ←R ES K(K′, x0)
c← ψ||χ c′ ← ψ′||χ′

g←R Ag(1k, pk, c) g←R Ag(1k, pk, c′)
Return 1 if g = t1 Return 1 if g = t1
Else return 0 Else return 0

Figure 1: The original game for PRIV security of DHE.

a secure scheme.
Next, we will provide our security proof of proposed DHE.

3.2 Security Proof
Theorem 3.1 In the random oracle model, given a PRIV PKE scheme Π = (K ,E,D), and an IND-CPA
SKE scheme Λ = (KS K ,ES K ,DS K), if there is a PRIV adversary AH against the hybrid encryption DHE =

(KH ,EH ,DH), then there exists a PRIV adversaryA and an IND-CPA adversary B, such that

Advpriv
DHE,AH

(k) ≤ Advpriv
Π,A(k) + Advind−cpa

Λ,B
(k) + qhv/2µ

where qh is an upper bound on the number of queries to the random oracle H, v is the plaintext size of Π, µ is
defined by high min-entropy of PRIV security of Π.

Proof. We will provide the security proof in the game-hopping way, namely start from a PRIV adversary
AH = (A f ,Ag) to DHE scheme in experiment Exppriv−1

DHE,AH
(k), and gradually modify the game so that we can

obtain similar result in experiment Exppriv−0
DHE,AH

(k), otherwise we can build PPT adversary A to break PRIV
security of Π and B to break IND-CPA security of Λ.

The original game for PRIV security of DHE is shown in Fig.1.
More precisely, if a successful adversary for this game exists, then

Advpriv
DHE,AH

(k) = Pr[Exppriv−1
DHE,AH

(k) = 1] − Pr[Exppriv−0
DHE,AH

(k) = 1]

is non-negligible for some AH . Next we present a simulator which gradually modifies the above experiments
such that the adversary does not notice it. Our goal is to show that Advpriv

DHE,AH
(k) is almost as big as the

corresponding advantages defined for PRIV security of the PKE scheme and IND-CPA security of the SKE
scheme, which are assumed negligible.

Because of the high min-entropy requirement of PRIV adversary, it is easy to see that x0 , x1, except with
negligible probability. Thus, we disregard the above possibility and consider the following cases: x̄0 , x̄1, or
x0 , x1, or both.

Case [x̄0 , x̄1] Since x0 , x1 and x̄0 , x̄1, the right part of xb (b ∈ {0, 1}), could be equal or not.

• When x0 = x1, the adversary has two targets, such as Π and Λ in two experiments. First look at the SKE
scheme Λ. In this case, the inputs to Λ in two experiments are the same, but still unknown to Ag. The
key derivation function H outputs K ← H(pk||x̄1) and K′ ← H(pk||x̄0). Since x̄0 , x̄1, we have K , K′.
Note that Ag does not know x0 nor x1, thus does not know K,K′, either. Then, Ag must tell which of
χ, χ′ is the corresponding encryption under the unknown keys without knowing x0, x1(x0 = x1), which
is harder than breaking IND-CPA security and that could be bounded by Advind−cpa

Λ,B
(k).

On the other hand, the adversary can also challenge the PKE scheme Π to distinguish two experiments,
but it will break the PRIV security. More precisely, the advantage in distinguishing ψ, ψ′ with certain
K,K′ is at most Advpriv

Π,A(k), since K,K′ are not output explicitly and unavailable to adversary.
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• When x0 , x1, this case is similar to the above, except that the inputs to Λ are different. Ag can do
nothing given χ, χ′ only, hence Ag’s possible attack must be focused on Π, and its advantage can be
bounded by Advpriv

Π,A(k).

Case [x0 , x1] Similarly, there must be either x̄0 , x̄1 or x̄0 = x̄1.

• When x̄0 = x̄1, the same session key K ← H(pk||x̄b) (b ∈ {0, 1}) is used for Λ. In this case, the ciphertexts
ψ, ψ′ are the same, adversary will focus on distinguishing χ, χ′. Note that A f cannot compute K even
though he knows x̄0 (or equivalently x̄1), because pk is not known to him (otherwise, it will break the
PRIV security of Π immediately!). Thus, the successful distinguishing requires Ag to choose the same
x̄0 = x̄1 when querying to the random oracle. Then, Ag has a harder game than IND-CPA (because it
does not know x0, x1), whose advantage is bounded by Advind−cpa

Λ,B
(k).

In order to be sure that adversary (A f ,Ag) mounting a brute-force attack to find out the session key of
Λ cannot succeed, the probability to find the key in searching all the random oracle queries should be
taken into account as well. Suppose that adversary makes at most qh queries to its random oracle, and
the Π’s plaintext size is v. Then, this probability could be upper bounded by qhv/2µ (Note that this bound
is in nature similar to that in [2, Sec.6.1]).

• When x̄0 , x̄1, as we have discussed above, this will break the PRIV security of Π, and advantage of
adversary could be bounded by Advpriv

Π,A(k).

Summarizing, we conclude that in all cases when (A f ,Ag) intends to break the PRIV security of our DHE
scheme, its advantage of distinguishing two experiments is bounded by the sum of Advpriv

Π,A(k), qhv/2µ and

Advind−cpa
Λ,B

(k).

3.3 Length-preserving Deterministic Hybrid Encryption
The first length-preserving PRIV PKE scheme is RSA-DOAEP due to [2]. The length-preserving property is
important in practice, for instance in bandwidth-restricted applications. RSA-DOAEP makes use of the RSA
trapdoor permutation and with a modified 3-round Feistel network achieves the same sizes of input and output,
i.e. |mDE | = |cDE |. As we have proved in Theorem 3.1, a construction proposed in Table 1 leads to a DHE.

Denote a length-preserving DHE that is composed of DE and SKE, s.t. |mDE | + |mS KE | = |cDE | + |cS KE |.
In particular, RSA-DOAEP + IND-CPA SKE ⇒ a length-preserving DHE, because both RSA-DOAEP and
IND-CPA SKE are length-preserving. Note that in [2, Sec.5.2], it is argued that RSA-DOAEP based hybrid
encryption scheme cannot be length-preserving any more, because a random session key has to be embedded
in RSA-DOAEP. However, by re-using the knowledge of public key pk and a part of the message, we can
indeed build the first length-preserving DHE, which is not only convenient in practice, but also meaningful in
theory.

3.3.1 Security Proof

According to Theorem 3.1, a PRIV PKE scheme Π = (K ,E,D) and an IND-CPA SKE scheme Λ = (KS K ,ES K ,DS K)
suffice to construct a PRIV hybrid encryption DHE = (KH ,EH ,DH). Besides, RSA-DOAEP is length-
preserving and PRIV secure according to [2].

Corollary 3.1 Denote by Λ any IND-CPA SKE scheme with its input length equal to output length. DHE =

(KH ,EH ,DH) composed of Π = (KDOAEP,EDOAEP,DDOAEP) and Λ = (KS K ,ES K ,DS K) is PRIV secure and
length-preserving.

Proof. It is concluded directly from Theorem 3.1 and [2], since both RSA-DOAEP and Λ are length-preserving.

4 Deterministic Encryption from Code-Based PKE
From a post-quantum point of view, it is desirable to obtain DE based on assumptions other than RSA or
discrete log. Code-based PKE, such as McEliece PKE [10] is considered a promising candidate after being
carefully studied for over thirty years.
McEliece PKE. Denoted ΠM = (KM ,EM ,DM), i.e. it consists of the following triple of algorithms [10].

1. Key generation KM: On input a security parameter λ, output (pk, sk) as follows, such that n, t ∈ N, t � n.
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K(1k):
(pk, sk)←R KM(1k)
HM ← H(1k, pk)
pk′ ← (pk,HM)
Return (pk′, sk)

E(pk′, x):
Parse pk′ into (pk,HM)
R← HM(x)
Parse R to r||re

Encode re to e
c← EM(pk, r||x; e)
Return c

D(sk, pk′, c):
Parse pk′ into (pk,HM)
x, r′, e← DM(sk, c)
Decode e to r′e
R′ ← r′||r′e
R← HM(x)
Return x if R = R′

Else return ⊥

Table 2: Construction of EwH Deterministic Encryption

• sk (Private Key): (S , ϕ, P)
G′: l × n generating matrix of a binary irreducible [n, l] Goppa code which can correct a maximum of t
errors, ϕ: an efficient bounded distance decoding algorithm of the underlying code, S: l × l non-singular
matrix, P: n × n permutation matrix, chosen at random.

• pk (Public Key): (G, t)
G: l × n matrix given by a product of three matrices S G′P.

2. Encryption EM: Given pk and an l-bit plaintext m, randomly generate n-bit e with Hamming weight t, output
ciphertext c = mG ⊕ e.

3. DecryptionDM: On input c, output m given sk.

• Compute cP−1 = (mS )G′ ⊕ eP−1, where P−1 is an inverse matrix of P.

• Error correcting algorithm ϕ corresponding to G′ applies to compute mS = ϕ(cP−1).

• Compute the plaintext m = (mS )S −1.

IND-CPA security of the McEliece PKE can be achieved by padding the plaintext with a random bit-string
r, |r| = da · le for some 0 < a < 1. We refer to [11] for details.

Postquantum security is not the only motivation to achieve DE from code-based PKE. Another good prop-
erty of the McEliece PKE and its variants is that its public key (being a generating matrix of an error-correcting
code) could be used as a hash function to digest the message. The fact that a hash function can be based on
hardness of decoding was originally noted by Stern [13]. Recently, such the function was designed and studied
in [1, 9]. The advantage that public key itself is able to work as a hash function, can do us a favor to build effi-
cient post-quantum DE. We call this Hidden Hash (HH) property of McEliece PKE.2 Henceforth, we assume
that this function behaves as a random oracle.

In [2], two constructions satisfying PRIV security have been proposed: Encrypt-with-Hash (EwH) and
Encrypt-and-Hash (EaH). Adapting the HH property of the McEliece PKE to the both constructions, we can
achieve PRIV secure DE. For proving PRIV security, we require the McEliece PKE to be IND-CPA secure,
which has been achieved in [11].
Construction of EwH. Let ΠM = (KM ,EM ,DM) be the IND-CPA McEliece PKE as described in Section 2,
based on [n, l, 2t + 1] Goppa code family, with lp-bit padding where lp = da · le for some 0 < a < 1, and
plaintext length lm = l − lp. Let H be a hash family defined over a set of public keys of the McEliece PKE.
HM : {0, 1}lm 7→ {0, 1}lp+dlog

∑t
i=1 (n

t)e and HN : {0, 1}lm 7→ {0, 1}2k are uniquely defined by 1k and pk. Without
knowledge of pk, there is no way to compute HM or HN (refer to [1, 9] for details). Let e be an error vector,
s.t. |e| = n with Hamming weight Hw(e) = t. According to Cover’s paper [6], it is quite efficient to find an
injective mapping to encode the bit string re of length dlog

∑t
i=1

(
n
t

)
e into e, and vice versa.

Our EwH scheme is presented in Table 2. Note that compared with the EwH scheme proposed by Bellare
et al. [2], our scheme does not need to include pk into the hash, because hash function HM itself is made of
pk. Public key pk could be considered as a part of the algorithm of the hash function, as well. When we model
HM as a random oracle, we can easily prove the PRIV security in a similar way as Bellare et al’s EwH.

2In this work, we do not claim any particular secure parameters. Investigating the parameters of the Hidden Hash function is out of
scope of this work.
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K(1k):
(pk, sk)←R KM(1k)
HN ← H(1k, pk)
pk′ ← (pk,HN)
Return (pk′, sk)

E(pk′, x):
Parse pk′ into (pk,HN)
T ← HN(x)
r ←R {0, 1}lp

e←R {0, 1}n

s.t. Hw(e) = t
c← EM(pk, r||x; e)
Return c||T

D(sk, pk′, c||T ):
Parse pk′ into (pk,HN)
x, r, e← DM(sk, c)
T ′ ← HN(x)
Return x if T = T ′

Else return ⊥

Table 3: Construction of EaH Efficiently Searchable Encryption

Kw(1k):
(pk, sk)←R K(1k)
H : {0, 1}∗ 7→ {0, 1}µ

H ←R H(1k)
pkw ← (pk,H)
skw ← sk
Return (pkw, skw)

Ew(pkw, x):
Parse pkw to (pk,H)
Parse x to x̄, x,

s.t. |x̄| = v, |x| = µ
R← H(pk||x̄) ⊕ x
c← E(pk, x̄; R)
Return c

D(skw, pkw, c):
Parse pkw to (pk,H)
sk← skw
〈x̄,R〉 ← D(sk, c)
x← H(pk||x̄) ⊕ R
x← x̄||x
Return x

Table 4: Construction of Deterministic Encryption from Witness-recovering PKE

A more favorable, efficiently searchable encryption (ESE) with PRIV security is EaH. EaH aims to model
the practical scenario in database security, where a DE of some keywords works as a tag attached to the
encrypted data. To search the target data, it is only required to compute the deterministic tag and compare it
within the database, achieving a search time which is logarithmic in database size.
Construction of EaH. The description of the McEliece PKE is similar to the above. EaH scheme is described
in Table 3. The HH property is employed in order to achieve PRIV secure efficiently searchable encryption.
Proof Sketch. Our proposals derived from code-based PKE can be proven PRIV secure, since they are essen-
tially the same as the Encrypt-with-Hash, and Encrypt-and-Hash constructions of [2]. The new and different
technique we employed here is to derive the hash function (RO) from the public key itself, in a quite natural
way [13, 1, 9]. Suppose that the hidden hash function in public key is a random oracle, and notice that the
underlying McEliece PKE is IND-CPA secure, then it is obvious to see that the following schemes are PRIV
secure, according to [2, Sec. 5-6].

5 Deterministic Encryption from Witness-recovering PKE
A PKE which is witness-recovering encryption, decodes from the ciphertext not only the message, but also the
random coin (witness) which is used to generate the ciphertext, i.e. for all E(pk, x; r) = c, 〈x, r〉 = D(sk, c).
Code-based PKE, such as the McEliece PKE, enjoys such a specific property. Recently, there are several
witness-recovering PKE [12, 3] proposed, as well. In this section, we show that since the random coin is
decoded at the same time as the message, it is possible to build a high message rate DE, by using the ran-
dom coin to carry some additional information. Message rate is measured as the ratio of plaintext length to
ciphertext length, which characterizes the transmission efficiency. For length-preserving encryptions, such
as RSA-DOAEP or our proposal in Sec.3, where input length equals to output length, the message rate is
optimally 1.

Although it seems somewhat strange to use randomness to carry useful information, our proposal manages
to modify the random coin used in the encryption algorithm, to get higher message rate than in the original
scheme, while keeping the PRIV security.

In Table. 4, let Λ = (K ,E,D) be IND-CPA secure, witness-recovering PKE scheme, where the message
domain and the random coin space of E is M and Ω, respectively, such that |M| = v, |Ω| = µ. Then Λw =

(Kw,Ew,Dw) is a PRIV secure DE with higher message rate.
In the above, H : {0, 1}∗ 7→ {0, 1}µ is considered as a family of cryptographic hash functions, i.e. random
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oracles. It is obvious to see that the message rate of Λw is higher than before, i.e. (|x̄| + |x|)/|c| > |x̄|/|c|, by
using our new technique.

For the same reason as discussed in Sec. 3.1, we require that x̄ has high min-entropy.
The security proof follows from the following two facts: 1) The basic scheme Λ is IND-CPA secure and

witness-recovering; 2) The hash function is modeled as a random oracle whose output is distributed uniformly
at random.

5.1 Security Proof
Theorem 5.1 Let Λ = (K ,E,D) be IND-CPA secure, witness-recovering PKE scheme. If there exists an
adversary Aw who breaks the PRIV security of Λw = (Kw,Ew,Dw) in Table 4, then there exists an adversary
B who breaks IND-CPA security of Λ, where the advantage of B is,

Advpriv
Λw,Aw

(k) ≤ Advind−cpa
Λ,B

(k) + 2qhv/2µ + Ppk · (8qhv + 2qh),

where qh, v, µ, and Ppk are defined in Lemma 5.1 below.

Proof. It is concluded from Lemma 5.1 and the games that follow it.

Lemma 5.1 (Theorem 5.1 [2]) Suppose that there exists an adversary who can break the Encrypt-with-Hash
(EwH) PRIV scheme with min-entropy µ, which outputs vectors of size v with components of length n and
makes at most qh queries to its hash oracle. Then there exists an IND-CPA adversary B against Λ such that,

Advpriv
ΛEwH ,A

(k) ≤ Advind−cpa
Λ,B

(k) + 2qhv/2µ + 8qhv · Ppk,

where Ppk is the (maximum) probability that a public key pk is drawn uniformly at random from its space.

Let us denote by G0,G1,G2 a series of games.
Game G0. The original game for PRIV security of Λw.
Game G1. The second game is modified from G0, with the only difference that we make use of a recoverable
random coin R′ instead of R in Encrypt-with-Hash ΛEwH [2, Sec. 5], such that R = H(pk||x) and R′ = H(pk||x̄)⊕
x, where x = x̄||x.
Game G2. The third game is modified from G1, with the only difference that A f have queried H(pk||x̄) ⊕ x
beforeAg is initiated.

We borrow the proof of Encrypt-with-Hash scheme from [2], which only differs from ours in that we make
use of a recoverable random coin R′ instead of R in [2], s.t. R = H(pk||x) and R′ = H(pk||x̄)⊕ x, where x = x̄||x.
Thus, it only needs to be shown that the distributions of R and R′ are uniform and random, so that no adversary
can distinguish them. Thanks to employment of the random oracle H, we can simply reuse the random coin to
carry the message as well as to build the proof.

Thus, we have |Pr[G1] − Pr[G0]| ≤ ARO. Since we have assumed the random oracle model, then ARO is
zero and Pr[G1] = Pr[G0].

On the other hand, for the game G2 obtained from G1, it is crucial to observe that any adversary A f may
have queried H(pk||x̄) ⊕ x before Ag, so that the simulation might fail. However, this probability is bounded
by 2Ppk · qh.

Thus, there is |Pr[G2] − Pr[G1]| ≤ 2Ppk · qh. The factor of 2 comes from the fact that A f has control over
two distinct messages. As a consequence, the probability of simulation failure is negligible as long as Ppk is
negligible. Note that the later property is not the standard requirement for PKE, however it holds for all known
PKE.

Notice that G2 is the PRIV security game of ΛEwH , we have the following,

Advpriv
Λw,Aw

(k) ≤ Advpriv
ΛEwH ,A

(k) + 2Ppk · qh.

Summarizing the above and Lemma 5.1, we have finished the proof.
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6 Extension to Chosen-Ciphertext
Security

Above, we have proposed several PRIV secure DE schemes in the CPA case. We believe that it is possible to
extend our results to the CCA scenario. As commented in [2], a PRIV-CCA scheme could be obtained from
a PRIV-CPA one with some additional cost, such as one-time signatures or other authenticated techniques to
deny a decryption query from the CCA attacker. The important point is that we have achieved very efficient
PRIV-CPA secure building blocks, which in some aspects are better than the previously known ones. A bad
news is that when extending RSA-DOAEP based hybrid encryption to the CCA scenario, it will probably lose
its nice length-preserving property, because some consistency check raises the overhead of bandwidth.

7 Conclusion
In the random oracle model, we presented a generic and efficient construction of deterministic hybrid en-
cryption by composing PRIV-secure PKE and IND-CPA SKE. In particular, this construction implies the first
length-preserving DHE, when instantiated with RSA-DOAEP.

Moreover, we presented a postquantum deterministic encryption by plugging-in the McEliece PKE into
the generic constructions Encrypt-and-Hash and Encrypt-with-Hash by Bellare and Boldyreva [2]. We point
out that the McEliece public key can also be used as a hash function.

Furthermore, we showed that witness-recovering encryption can be used to construct deterministic encryp-
tion schemes with plaintext length which is larger than that of the original schemes, by using a part of the
plaintext as random coins (witness).

Finally, we noted that the standard authentication techniques (discussed, in particularly, in [2]) can be used
to upgrade our schemes to PRIV-CCA security.

All the above results come for the price of assuming a particular distribution of the plaintext – namely
that its first part (having a size of the domain of the underlying PRIV-secure PKE scheme) is of high min-
entropy. An open question is to replace this assumption with a standard one – the high min-entropy of the
whole plaintext. Furthermore, since all the above results are achieved in the random oracle model, another
open question is to remove this assumption by obtaining the constructions secure in the standard model.
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